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Executive Summary 
This document, 5G-CLARITY D4.2, constitutes the second deliverable of “WP4: Management Plane”. It 
describes an initial implementation and validation of the 5G-CLARITY system artifacts allowing for user-
friendly, zero-touch management of services and slices on private network infrastructures. These artifacts 
are arranged into two 5G-CLARITY system architecture strata: the Management and Orchestration stratum, 
and the Intelligence stratum.  

On the one hand, the Management and Orchestration stratum encompasses all the necessary functionality 
to deploy and operate the different 5G-CLARITY services (and associated resources) throughout their lifetime, 
from their commissioning to decommissioning. To be compliant with the design principles of OSS solutions 
in Beyond 5G (B5G) systems - e.g., modularity, scalability, statelessness, extensibility, simplicity and 
functional abstraction -, this stratum is architected into a set of self-contained management functions that 
produces/consumes management services via RESTful APIs. The interoperation and communication across 
these management functions is enabled through a service bus with message routing capabilities, thereby 
resulting in a Service Based Management Architecture (SBMA). Depending on their intended functionality, 
the management functions building up the Management and Orchestration stratum are arranged into four 
subsystems.  

• Service and slice provisioning subsystem: VIM, NFVO, Slice Manager, Transport Controller and Multi-
WAT non-RT Controller 

• Data processing and management subsystem: Data Semantic Fabric and Data Lake 

• External access mediation subsystem: Mediation Function 

• Cloud native support subsystem: Authentication and Registration Function and Distributed Data 
Storage 

On the other hand, the Intelligence stratum is an add-on layer enriching 5G-CLARITY system capabilities with 
solutions leveraging Artificial Intelligence (AI) and intent based mechanisms. This stratum is composed of 
two main building blocks. 

• AI engine: a containerized execution environment which provides hosting and management of 
Machine Learning (ML) models, from design phase to run-time phase. The AI engine makes use of 
data collected from the 5G-CLARITY Management and Orchestration stratum to train and execute 
ML models.  

• Intent engine: it provides a contact to and from the AI engine as well as layer of abstraction towards 
the consumer of the AI functionalities, typically the private NOP.  

The main outcome of 5G-CLARITY D4.1 [1] is a state-of-the-art analysis and initial solution design of the main 
building blocks in these two strata. In the management and orchestration stratum, the scope has been 
limited to two subsystems: i) the service and slice management subsystem, with a functional description of 
the Slice Manager and the Multi-WAT non-RT Controller and a practical example of their use for the 
provisioning of a 5G-CLARITY slice across various multiple wireless technologies; ii) data processing and 
management subsystem, where the internal details of Data Semantic Fabric and Data Lake functions have 
been captured. In the intelligence stratum, both the AI and intent engines have been addressed, not only 
from architecture perspective, but also from service perspective. Indeed, to illustrate the applicability of 
these engines into in-scope 5G-CLARITY scenarios, a total of nine ML algorithms and eight intent use cases 
have been defined.  

5G-CLARITY D4.2 provides a validation of the initial solution design provided in 5G-CLARITY D4.1 [1]. The 
work present in D4.2 captures the progress made in “T4.1: Development of 5G/Wi-Fi/LiFi management 
platform, including policy language” and “T4.3: AI engine development and learning algorithms, using 
historical network data for self-learning purpose” in the last nine months, which basically represents the 
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development activities on the architectural aspects (components and interfaces) and ML algorithms 
originally designed in D4.1 [1].  

In addition, D4.2 also serves to launch “T4.2: Integration with E2E 5G slice framework”, which a first solution 
design of mechanisms enabling the public-private network integration. This integration, based on the 
interworking and communication between 5G-CLARITY components of external MNO assets, is addressed 
into this deliverable into throughout three separate workstreams: i) management capability exposure, which 
deals with everything related to the external access mediation subsystem from 5G-CLARITY management 
and orchestration stratum, including the internal design of mediation function and its use for the 
enforcement of the service delivery models applicable to the in-project pilots; ii) public-private network 
connectivity, which identifies WAN technology data networking services that can be used for this end, 
providing a comparative analysis between them in terms of topology, technology, QoS features and cost; iii) 
distributed AI, which assess the implications of partially migrating AI assets from the private premises to the 
public cloud for the sake of resource efficiency (e.g. data training is resource-demanding, and not always 
feasible on a 5G-CLARITY site) and performance gains (e.g. enriching AI engine with data collected from both 
PLMN and private premises). 
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1 Introduction  
5G-CLARITY system provides a rich set of capabilities for private network operation, including i) on-premise 
slicing, for the provisioning of dedicated resource quotas to separate services/tenants on private 
infrastructures; ii) multi-WAT real-time telemetry system, aggregating and processing data for service 
assurance activities; iii) ML algorithms, for supporting autonomous network management; iv) AI engine, 
which deals with the execution and maintenance of ML models; and v) intent-based networking, for 
facilitating customer interaction in private networks. These capabilities are inherent to two 5G-CLARITY 
architecture strata: management and orchestration stratum, dealing with everything about slice 
provisioning and monitoring; and intelligence stratum, which provides necessary AI/ML and intent based 
artifacts to assist in the slice run-time operation (e.g., assurance).  

The present deliverable reports an initial implementation of the above-referred capabilities, building upon 
the groundwork laid in 5G-CLARITY D4.1 [1], and validates them against in-scope application scenarios. In 
addition, it provides an initial solution design for public-private network integration feature, which allows a 
5G-CLARITY site (private infrastructure) to communicate with the PLMN domain (public infrastructure) for 
the provisioning of E2E services in Public Network Integrated Non-Public Network (PNI-NPN) scenarios. These 
scenarios will be a future-proof realization of private 5G networks in the mid and long run, and therefore are 
also within the scope of 5G-CLARITY project.  

1.1 Scope of this document 
5G-CLARITY D4.2 is the second deliverable of WP4: Management Plane”. It provides implementation details 
and validation results of the operational capabilities inherent to 5G-CLARITY system, and that were first 
designed in 5G-CLARITY D4.1 [1]. In addition, 5G-CLARITY D4.2 provides an initial solution design for public-
private network integration, with a focus on the applicability of different service delivery models in PNI-NPN 
scenarios.  
5G-CLARITY D4.2 captures outcomes from all WP4 tasks: 

• T4.1: Development of 5G/Wi-Fi/LiFi management platform, including policy language. According to 
the 5G-CLARITY system architecture defined in 5G-CLARITY D2.2 [2], this platform corresponds to 
two subsystems from the 5G-CLARITY management and orchestration stratum: the service and slice 
provisioning subsystem, and the data processing and management subsystem. 5G-CLARITY D4.1 [1] 
provided a state-of-the-art analysis and initial solution design for these two subsystems. Following 
this deliverable, activities focused on the development of Slice Manager and multi-WAT near-RT 
Controller (and their integration with the MANO stack and SDN controller) were launched. 5G-
CLARITY D4.2 reports the first implementation and validation results in this regard.  

• T4.2: Integration with E2E 5G slice framework. This task aims to address the interworking and 
communication of 5G-CLARITY components with external MNO assets. To allow for the realization 
of PNI-NPN scenarios, it is needed to guarantee the availability of solutions for three different levers: 
i) management capability exposure, which deals with everything related to the external access 
mediation subsystem from 5G-CLARITY management and orchestration stratum, including the 
internal design of mediation function and its use for the enforcement of the service delivery models 
applicable to the in-project pilots; ii) public-private network connectivity, based on the selection of 
appropriate WAN technology data networking services enabling network layer connectivity ; and iii) 
distributed AI, which represents the ability to partially migrating AI assets from the private premises 
to the public cloud, for the sake of resource efficiency and performance gains. 5G-CLARITY D4.2 is 
the first document that reports on the solution design for these levers.   
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• T4.3: AI engine development and learning algorithms. According to the 5G-CLARITY system 
architecture defined in 5G-CLARITY D2.2 [2], this platform corresponds to the 5G-CLARITY 
intelligence stratum. 5G-CLARITY D4.1 [1]provided a state-of-the-art analysis and initial solution 
design of the components building up this stratum: AI engine and intent engine. It also illustrates the 
applicability of these engines into different application scenarios, with the definition of different   ML 
algorithms and intent use cases. Following this deliverable, efforts have been concentrated on the 
development of AI and intent engines, and the implementation of hosted ML models. 5G-CLARITY 
D4.2 captures the first results from this work. 

The specific objectives of this deliverable are as follows: 

• OBJ-1: Initial implementation of 5G-CLARITY service and slice provisioning system, with a first 
release version of Slice Manager and Multi-WAT non-RT Controller (T4.1). 

• OBJ-2: Initial implementation of 5G-CLARITY data processing and management subsystem, with a 
first release version of the Data Semantic Fabric and Data Lake (T4.1). 

• OBJ-3: Initial implementation of the AI engine (T4.1).  

• OBJ-4: Initial implementation of the Intent engine (T4.1) 

• OBJ-5: Development and evaluation of ML algorithms (T4.1)  

• OBJ-6: Initial solution design of mechanisms enabling public-private network integration (T4.2).  

1.2 Document structure 
The rest of this document is structured as follows: 

• Section 2 covers OBJ-1 and OBJ-2, with a first release version of following management functions:  
Slice Manager, Multi-WAT non-RT Controller, Data Semantics Fabric and Data Lake. This section 
provides implementation details of these management functions (i.e., internal components, built-in 
models and interfaces across them), together with a functional validation of their capabilities. For 
this functional validation, a set of application scenarios are specified. This  

• Section 3 covers OBJ-5, reporting the results of the ML algorithms defined in D4.1. The following 
aspects are covered for individual algorithms: implementation description (e.g., algorithm 
architecture, data acquisition & pre-processing, training time, prediction/classification accuracy), 
evaluation methodology (e.g., methods, scenarios, data sets, KPIs to be assessed) and evaluation 
results. All these details make this section cover a large part of the deliverable.  

• Section 4 covers OBJ-3, extending from the initial solution design specified in D4.1. The features 
developed around ML model hosting and management have been validated and integrated into the 
first release version of the AI engine.  

• Section 5 covers OBJ-4, extending from the initial solution design specified in D4.1. The northbound 
and southbound interfaces have been validated and integrated into the first version of the Intent 
engine. This section also includes a couple of in-project application scenario to showcase the 
capabilities and applicability of the Intent Engine.  

• Section 6 covers OBJ-6, providing an initial solution design for the integration of private network and 
public network in the 5G-CLARITY ecosystem across all strata, from connectivity layer up to 
intelligence layer.  

• Finally, Section 7 captures the takeaways of this deliverable.  

 



D4.2 – Validation of 5G-CLARITY SDN/NFV Platform, Interface Design 
            with 5G Service Platform, and Initial Evaluation of ML Algorithms  

20 

 
5G-CLARITY [H2020-871428] 

1.3 On the fulfilment of 5G-CLARITY management plane requirements and KPIs 
In this section we discuss how the developments presented in this deliverable contribute to the Management 
and Orchestration stratum requirements and the Intelligence stratum requirements identified in D2.2 [2]. 
Similarly, we describe how this deliverable contributes to the overall project objective KPIs. 

Table 1-1 describes our contribution to the Management and Orchestration stratum requirements and KPIs, 
and Table 1-2 does the same with the Intelligence stratum requirements and KPIs. 

Table 1-1: Management and Orchestration Stratum - Functional Requirements and KPIs 

Requirement ID Requirement Description Component  
Means of Verification  

[D4.2 section] 

CLARITY-MOS-R1 

The 5G-CLARITY management and 
orchestration stratum shall be architected 
following the Service Based Management 
Architecture (SBMA) principles, with a set of 
MFs providing/consuming management 
services through a service bus. 

ALL Design captured in Figure 2-1 
[Section 2] 

CLARITY-MOS-R2 

The 5G-CLARITY management and 
orchestration stratum shall allow for the 
provisioning of 5G-CLARITY resource-facing 
services (i.e., 5G-CLARITY wireless, compute 
and transport services).     

Service and 
Slice 

Provisioning 
subsystem 

Section 2.1 discusses how to 
configure physical resources to 
provision 5G-CLARITY slices. 
Section 2.1.2 presents how to 
implement resource quotas in 
wireless, transport and 
compute. 

CLARITY-MOS-R3 

The 5G-CLARITY management and 
orchestration stratum shall keep a resource 
inventory, with information on the on-
premises resources that can be used for the 
provision of 5G-CLARITY resource-facing 
services. This includes information on: i) the 
resource capacity of deployed wireless access 
nodes, including Wi-Fi/LiFi APs and physical 
gNBs; ii) the compute nodes available in the 
clustered NFVI (RAN cluster and edge cluster), 
and related computing/storage/networking 
resources; iii) the capacity and topology of 
deployed transport network.  

Slice Manager, 
multi-WAT non-

RT RIC 

The Slice Manager and multi-
WAT non-RT RIC components 
described in Section 2.1.1.4 
maintain an inventory of the 
used compute and wireless 
resources. We leave for future 
work the definition of 
mechanisms to track usage of 
compute resources. 

CLARITY-MOS-R4 
The 5G-CLARITY management and 
orchestration stratum shall store a catalog of 
VxFs/NSDs. 

NFVO  Use of OSM RELEASE SEVEN 
[Section 2.1] 

CLARITY-MOS-R5 
The 5G-CLARITY management and 
orchestration stratum shall support to create, 
retrieve, update and delete VxFDs/NSDs 

NFVO Use of OSM RELEASE SEVEN 
[Section 2.1] 

CLARITY-MOS-R6 
The 5G-CLARITY management and 
orchestration stratum shall allow to create 
several instances of the same VxF/NFV service. 

NFVO Use of OSM RELEASE SEVEN 
[Section 2.1] 

CLARITY-MOS-R7 

The 5G-CLARITY management and 
orchestration stratum shall allow VxF / NFV 
service scaling. This scaling includes the 
scaling-in and scaling-out the resources of 
deployed VxF / NFV service instances.  

NFVO Use of OSM RELEASE SEVEN 
[Section 2.1] 

CLARITY-MOS-R8 The 5G-CLARITY management and 
orchestration stratum shall allow for the 

Slice Manager “5G-CLARITY Slice reservation 
service” and “Service 
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provisioning of 5G-CLARITY slices, by defining 
separate resource quotas when allocating 
individual 5G-CLARITY resource-facing services. 

Instantiation service” available 
[Section 2.1.1.4.2]. 
Mechanisms related to 
wireless, transport and 
compute quotas described in 
Section 2.1.2. 
 
ML algorithms: on RAN slicing 
in multi-tenant networks 
[Section 3.3]; resource 
partitioning in a multi-
technology RAN [Section 3.6];  
on dynamic transport network 
setup and computing resource 
provisioning [Section 3.7] 

CLARITY-MOS-R9 

The 5G-CLARITY management and 
orchestration stratum shall maintain 
information regarding the mapping 
between 5G-CLARITY slices, constituent 5G-
CLARITY resource-facing services and allocated 
resources. 

Slice Manager 

Slice Manager keeps track of 
compute resources allocated to 
each 5G-CLARITY slice. Multi-
WAT non-RT RIC keeps track of 
user airtime for WiFi RANs. 
Additional RATs to be added in 
the future. 

CLARITY-MOS-
R10 

The 5G-CLARITY management and 
orchestration stratum shall allow resource 
elasticity and AI-assisted placement 
optimization as part of the 5G-CLARITY slice 
lifecycle management. 

Slice Manager 

ML algorithms: on optimal 
network access problem 
[Section 3.4]; on adaptive AI-
based defect-detection in a 
smart factory [Section 3.8] 

CLARITY-MOS-
R11 

The 5G-CLARITY management and 
orchestration stratum shall provide means for 
model-based data aggregation, with the ability 
to collect and process management data (e.g., 
performance measurements, fault alarms) 
from different sources in an automated and 
scalable manner. 

Near-RT RIC 

Telemetry data interfaces 
available [Section 2.2.2.4]. 
 
 

Data Processing 
and 

Management 
Subsystem 

Interfaces for Data Semantic 
fabric and data lake no 
available thus far [Section 
2.2.2] 

CLARITY-MOS-
R12 

The 5G-CLARITY management and 
orchestration stratum shall be able to correlate 
aggregated data with deployed 5G-CLARITY 
slices and services instances, providing input to 
the intelligence engine for AI assisted 
operation of these instances. 

Data Processing 
and 

Management 
Subsystem 

Interfaces for Data Semantic 
fabric and data lake no 
available thus far [Section 
2.2.2] 

CLARITY-MOS-
R13 

The 5G-CLARITY management and 
orchestration stratum shall provide necessary 
cloud-native capabilities for MF service 
production/consumption across the entire 
stratum. 

Cloud Native 
Support 

Subsystem 

Possible in theory but not 
implemented in our first 
release since it required re-
architecting some of the 
background assets. 

CLARITY-MOS-
R14 

The 5G-CLARITY management and 
orchestration stratum shall allow individual 5G-
CLARITY customers (e.g. MNOs) to securely 
access and consume MF services. 

Mediation 
Function  

Design of token-based 
authentication mechanism 
[Section 6.1]  

CLARITY-MOS-
R15 

The 5G-CLARITY management and 
orchestration stratum shall provide the means 
to expose capabilities with appropriate 

Mediation 
Function 

Design of API gateway [Section 
6.1] 
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abstraction levels to individual 5G-CLARITY 
customers    

CLARITY-MOS-
R16 

The 5G-CLARITY management and 
orchestration stratum shall provide isolation 
among customers’ workflows and request    

Mediation 
Function 

Design of API gateway [Section 
6.1] 

KPI KPI description Component 
Means of verification  

[D4.2 section] 

CLARITY-MOS-
KPI1 

According to OBJ-TECH-6, the 5G-CLARITY 
management and orchestration stratum shall 
provision a service less than 5 minutes, while 
providing security and isolation to 
infrastructure and service slices. 

Service and 
Slice 

Provisioning 
Subsystem 

An initial experiment is 
performed that delivers times 
around 1 minute. Figure 2-22 
[2.1.3] 

CLARITY-MOS-
KPI2 

According to OBJ-TECH-7, the 5G-CLARITY 
management and orchestration stratum shall 
provision an E2E 5G slice integrating compute 
and transport resources of an MNO in less than 
10 minutes 

Mediation 
Function, Slice 

Manager 

Not available thus far. Will be 
considered in D4.3. 

 

Table 1-2: Intelligence Stratum - Functional Requirements and KPIs 

Requirement ID Description Component Means of verification [D4.2 
section] 

CLARITY-INTS-R1 

The 5G-CLARITY intelligence stratum shall 
leverage machine learning (ML) models to 
support intelligent management of network 
functions. 

AI Engine 

Initial implementation and 
validation of AI Engine 
available and demonstrated in 
Section 4. 

CLARITY-INTS-R2 

The 5G-CLARITY intelligence stratum shall host 
ML models and offer them as services that are 
accessible outside of the intelligence stratum. 
Consumers of the ML services are either the 
network operator or other network functions. 

AI Engine& 
Intent Engine 

Partial support. In Section 5 we 
demonstrate how the Intent 
Engine can make use of 
services made available by ML 
model. Similar use could be 
made by services outside 
Intelligence stratum. 

CLARITY-INTS-R3 

The 5G-CLARITY intelligence stratum shall 
provide a point of access for ML services to 
consume data from the network and forward 
recommended configurations to suitable 
network functions. 

AI Engine & 
Intent Engine 

In Section 5.3.2 we define how 
Intent Engine can access a 
telemetry flow from the Data 
Lake and make it available to 
ML models in the AI Engine 

CLARITY-INTS-R4 

The 5G-CLARITY intelligence stratum shall 
provide ML designers a process or interface to 
manage the lifecycle of ML models, including 
the deployment as services. 

AI Engine 

In Section 4.3 we demonstrate 
how ML models can be 
provisioned inside the AI 
Engine making use of 
OpenFaaS. 

CLARITY-INTS-R5 

The 5G-CLARITY intelligence stratum shall 
expose a communication interface towards the 
end user that simplifies the management of 
the 5G-CLARITY platform using intents, 
including intent-based network configuration 
and intent-based usage of available ML 
services. 

Intent Engine 

In Section 5 we demonstrate 
the Intent Engine. In Section 
5.2.2 we describe the Intent 
Matching component that is 
used to translate high level 
intents into actual API calls. In 
Section 5.3 we describe two 
example intent use cases. 

CLARITY-INTS-R6 The 5G-CLARITY intelligence stratum shall 
expose an intent management interface 

Intent Engine Section 5.1.2 describes the 
north bound interface of the 
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through which the intent lifecycle can be 
controlled, including creation and removal. 

Intent Engine that enables 
intent management. 

KPI KPI description Component Means of Verification  
[D4.2 section] 

CLARITY-INT-
KPI1 

According to OBJ-TECH-8, the 5G-CLARITY 
intelligence stratum shall demonstrate how the 
AI engine can reduce both manual and semi-
automated intervention in at least 2 relevant 
use cases. 

AI Engine and 
Intent Engine 

Partial support. ML algorithms 
are defined and initially 
evaluated in Section 3. AI 
Engine and Intent Engine are 
demonstrated in Sections 4 and 
5. In D4.3 we will focus in 
demonstrating onboarding of 2 
ML models from Section 3 into 
the AI Engine. 
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2 Validation of 5G-CLARITY Management Stratum Assets  
Figure 2.1 depicts the design of the 5G-CLARITY management and orchestration stratum defined in 5G-
CLARITY D2.2 [2] and 5G-CLARITY D4.1 [1]. In this section we present a detailed design and preliminary 
evaluation of two subsystems of the management and orchestration stratum, namely: i) the service and slice 
provisioning subsystem, discussed in Section 2.1, and ii) the data processing subsystem, discussed in Section 
2.2. 

 
Figure 2.1. 5G-CLARITY management and orchestration stratum from D4.1 [1] 

2.1 5G-CLARITY service and slice provisioning subsystem  
The 5G-CLARITY service and slice provisioning subsystem, included in the management and orchestration 
stratum of the 5G-CLARITY architecture (Figure 2.1), allows to provision slices on top of the 5G-CLARITY 
infrastructure stratum. As introduced in 5G-CLARITY D2.2 [2] and 5G-CLARITY D4.1 [1], 5G-CLARITY slices 
explicitly consider multi-tenancy to provide infrastructure slicing and deliver isolation among tenants. Notice 
that this differs from 3GPP slices that take a multi-service approach. Next, we provide an illustrative example 
that describes the concept of 5G-CLARITY slices. This is built upon the preliminary example provided in 5G-
CLARITY D4.1. 

Figure 2.2 depicts an example of a network slice deployment over the 5G-CLARITY infrastructure stratum, 
including: i) 5G New Radio (5GNR), Wi-Fi and LiFi access nodes; ii) network functions instantiated in the RAN 
compute cluster, such as the control and user plane functions of the CU; and iii) an edge compute cluster 
with network function virtualization (NFV) functionalities hosting virtual network and application functions. 
5G-CLARITY uses the concept of resource chunks to provide isolation among slices. In Figure 2.2, we can see 
two compute chunks in the edge compute cluster serving two different tenants. Each chunk is composed of 
specific compute, storage and memory resources. Isolation in the Ethernet transport domain is achieved 
using virtual local area networks (VLANs), whereas in the wireless domain isolation is achieved through 
technology specific quotas consisting of physical resource blocks (PRBs) for 5GNR, airtime for Wi-Fi, and a 
combination of airtime and wavelength for LiFi.  
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Figure 2.2. Example of multiple 5G-CLARITY slices provisioned over a common infrastructure 

Once resource chunks are allocated to a slice, one or more network services can be instantiated providing 
communication services. In Figure 2.2, we see three network services in the first compute chunk and two in 
the second one. Network Service 1 (NS1), embedded within the tenant 1 compute chunk, provides access to 
an application function depicted in red. This network service is advertised using the PLMN identifier (PLMNID) 
and slice service type – slice differentiator (SSTSD) pair (PLMNID-1, SSTSD-1) in the 5GNR nodes, and using 
the service set identifier (SSID) SSID1 in the Wi-Fi and LiFi nodes. Note that SSTSDs cannot be advertised by 
the Wi-Fi/LiFi APs, hence we map each SSTSD into a specific SSID. Traffic connecting to the (PLMNID-1, SSTSD-
1) service in the 5GNR nodes is delivered to the red VLAN in the transport domain, which connects to a UPF 
function deployed in the tenant 1 compute chunk. A separate VLAN (cyan) is used to deliver the Wi-Fi and 
LiFi traffic to the non-3GPP interworking function (N3IWF) function in the same compute chunk. In addition, 
an AT3S user plane function sits behind the UPF to allow UEs featuring both Wi-Fi and 5GNR interfaces to 
benefit from the 5G-CLARITY multi-connectivity framework. Within the same compute chunk a second 
network service NS2 is advertised using (PLMNID-1, SSTSD-2) in the 5GNR nodes and SSID-2 in the Wi-Fi and 
LiFi nodes. Notice that both network services are associated to the same 5G core (NS0) and therefore use 
the same PLMNID. The second compute chunk embeds a basic network service (NS3) including only the user 
plane functions (N3IWF and UPF), whereas the remaining 5G core functionalities are deployed in the PLMN 
(not explicitly depicted in Figure 2.2). An additional network service (NS4) sustains the application function 
depicted in pink, and is advertised using (PLMNID-2, SSTSD-3) and SSID3 in the 5GNR, Wi-Fi and LiFi nodes 
respectively. 

In the next sections the following cases will be described:  

i) detailed preliminary implementation of the 5G-CLARITY service and provisioning subsystem,  

ii) the way infrastructure isolation can be implemented in different network domains by means of 
quotas,   

iii) a preliminary evaluation of the time required to provision a 5G-CLARITY slice. 

 5G-CLARITY service and slice provisioning: initial implementation  

In this section the initial implementation of the 5G-CLARITY slicing system is introduced which consists of: 

• RAN slicing: Where 5GNR, 4G, Wi-Fi and LiFi Physical Network Functions (PNFs) are sliced by 
advertising a slice-specific service identifier and reserving a quota of RAN resources to that service. 
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• Compute slicing: Where a set of compute resources are allocated to a 5G-CLARITY slice, defined as 
CPU, RAM and storage quota. Within these set of resources multiple network services can be 
instantiated, including a virtualized core network. 

• Transport slicing: Consisting in the mapping of a RAN service to a transport service with a defined 
quality of service. In our initial implementation transport slicing is implemented using Ethernet 
VLANs and is not further discussed in this section. 

In addition to discussing our initial implementations in RAN, compute and transport domains, in the final 
subsection of this chapter we present design details of the interface between the slice manager and the 
multi-WAT n-RT RIC management functions (MFs) introduced in 5G-CLARITY D4.1 [1], which are the key MFs 
that implement the 5G-CLARITY service and slice provisioning subsystem. 

 RAN slicing: 5GNR, 4G, Wi-Fi and LiFi 

5G-CLARITY features a heterogeneous set of RAN technologies, including: 

• 5GNR and 4G small cells and vRAN components provided by Accelleran, 

• Custom Wi-Fi APs provided by I2CAT,  

• LiFi APs provided by pureLiFi.  

To enable RAN slicing the service and slice orchestration subsystem within the 5G-CLARITY management 
stratum needs to be able to manage and configure these WATs. To enable this, in 5G-CLARITY we have 
chosen NETCONF [3] as the common management protocol across RAN technologies. Notice that NETCONF 
is the protocol chosen by O-RAN to implement the O1 interface for service provisioning. Hence, the 5G-
CLARITY approach is aligned with O-RAN standards. 

Using NETCONF, a customized YANG data model [4] is required for each RAN technology. The developed 
YANG models for the aforementioned technologies are described in the next section. 

2.1.1.1.1 4G and 5GNR slicing – Yang modelling  

Accelleran cloud native dRAX solution shown in Figure 2.3 supports both 4G and 5GNR standalone 
disaggregated-architectures with Control User Plane Split (CUPS) separation incorporating the control of a 
cluster of combined 4G DU/RUs such as the ones based on Accelleran E1000 series small cell products, and 
a cluster of combined or fully disaggregated DU and RU from the O-RAN ecosystem using standardised F1 
and Fronthaul 7.2 interfaces.  

Within 4G scope, dRAX supports Multi-Operator Core Network (MOCN) and network sharing scenarios with 
up to 6 different PLMNIDs as per 3GPP specifications. In 5G context, dRAX supports MOCN and network 
slicing scenarios with up to 12 different PLMNIDs as per 3GPP specifications. While the CU-CP model holds 
the PLMNIDs supported and sent using SIB1, the CU-UP model holds the Single Network Slice Selection 
Assistance Information (S-NSSAIs) supported in each PLMNID. Unlike in the 4G case, a key difference 
between LTE Release 9 and 5G Release 15 is that in 5G each operator sharing a cell can have its own cell 
identity and tracking area code for that cell, whereas LTE would not be able to support that. 
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Figure 2.3. Accelleran dRAX 4G/5G  

Figure 2.4 shows the 4G YANG model definition for the configuration of the 4G E1000 series small cells 
managed via dRAX RIC and CU CP function. The primary and secondary PLMN configuration in the model 
enables the support of a Network Node Selection Function (NNSF) in the dRAX CU CP microservice to enable 
MOCN and connectivity to different EPC instances over S1-MME based on the PLMNID used by the UE to 
attach to the network. The configuration of the S1-U tunnels in the model at RAN level towards specific S-
GW instances (IP addresses) is not necessary, since this information is provided dynamically by the MME to 
the dRAX CU-CP using the S1AP interface. This configuration is passed on by dRAX CU-CP to the 4G E1000 
series small cells in order to establish direct GTP-U tunnels towards the different involved S-GWs (nominally 
up to 6 different S-GWs with a maximum of 12 during S1 handovers procedures).  

Figure 2.5 shows the preliminary 5G YANG CU model definition for the configuration of the 5G CU CP and CU 
UP functionality inside dRAX together with its n-RT RIC. The NNSF is done at the dRAX CU CP level enabling 
MOCN of up to 12 PLMNs. The association between CU-CP and CU-UP instances is flexible to enable 
scalability and isolation of the resources that can be dedicated to different PLMNs and/or S-NSSAI 
combinations.  

The definition of the preliminary 5GNR YANG data model and the associated functionality enable multi-AMF 
and multi-UPF connectivity to implement MOCN and slicing approaches and scenarios. A single CU-UP can 
provide support for multiple operators. For UP resource scalability and slice isolation different CU-UP 
instances can be spawned and connected to the same CU-CP instance. A particular CU UP instance can be 
uniquely associated to a particular PLMN/SST pair or to a particular PLMN with all the supported SSTs within. 
Figure 2.6 represents some possible configuration scenarios that could be flexibly supported. 
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Figure 2.4. 4G eNB YANG model 
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Figure 2.5. 5GNR CU-UP, CU-CP YANG model 
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Figure 2.6. Flexible scenarios based on multi-AMF/multi-UPF configuration 

2.1.1.1.2 Wi-Fi slicing – Yang modelling  

The I2CAT Wi-Fi box was introduced in 5G-CLARITY D3.1 [5], Section 6.2, and is described in Figure 2.7. 

 
Figure 2.7. I2CAT Wi-Fi box model 

The I2CAT Wi-Fi box is composed of a Linux Single Board Computer (SBC) with multiple wireless modems and 
wired interfaces, connected through a set of dynamically provisioned software bridges. The diagram on the 
right of Figure 2.7 provides an abstract model of this box. Within the box each interface can be modelled in 
detail since it has its specific attributes and allowed configurations. 

Figure 2.8 and Figure 2.9 describe respectively the high-level structure of two YANG models used by the 5G-
CLARITY slice and service provisioning subsystem to manage I2CAT Wi-Fi boxes. The first model, 
“wireless.yang”, is used to manage the multiple wireless (Wi-Fi) interfaces available in an I2CAT Wi-Fi box, 
whereas the second model, “wired.yang”, is used to manage the wired interfaces. 

Looking at the “wireless.yang” model in Figure 2.8 we can see that it exposes a list of wireless interfaces, 
where for each interface we can set configuration parameters, access the current configured state, and 
importantly create virtual interfaces, where each virtual interface represents a dedicated AP specific SSID, 
access credentials and QoS parameters. Looking at Figure 2.9 the “wired.yang” model we can see a list of 
wired (ethernet) interfaces in the I2CAT Wi-Fi box, where for each interface we can set configuration 
parameters, including the creation of a VLAN, and access the current state. 
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The models depicted in Figure 2.8 and Figure 2.9 enable the 5G-CLARITY service and slice provisioning 
subsystem to provision a Wi-Fi service by launching an SSID, creating a VLAN interface, and connecting the 
SSID to the backhaul VLAN using an ovsdb manager that has been released as open source [6]. 

 
Figure 2.8. UML representation of wireless.yang used to manage 802.11 interfaces in Wi-Fi APs 
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Figure 2.9. UML representation of wired.yang used to manage Ethernet interfaces in Wi-Fi APs 

2.1.1.1.3 LiFi slicing – Yang modelling  

A LiFi specific YANG model has been developed to allow the 5G-CLARITY service and slice provisioning 
subsystem to manage pureLiFi APs. Being our choice of LiFi technology based on the same IEEE 802.11 MAC, 
the LiFi and Wi-Fi models look rather similar. The LiFi yang model is called plf-lifi and is illustrated in Figure 
2.9 and Figure 2.10. The model specifies the configuration of LiFi service parameters including SSID, security 
credentials and VLAN: 

• The lifi container specifies parameters to configure the LiFi AP including interface parameters such 
as IP address and network mask.  

• The access-point container specifies the configurations for a Basic Service Set (BSS) including SSID 
and encryption type.  

The VLAN configuration is also supported in the Yang model to enable LiFi slicing.  
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Figure 2.10. LiFi YANG model 

 Compute slicing: the edge cluster 

The reference edge compute cluster that is used in 5G-CLARITY is based on OpenStack Ussuri. Cloud native 
approach based on Kubernetes is also possible within the 5G-CLARITY architecture, but it is decided to 
choose OpenStack for the following two main reasons. First, preliminary assets developed by 5G-CITY project 
partners [7] are based on OpenStack. Reusing these assets in 5G-CLARITY simplifies the edge cluster 
development and allows us to focus development efforts on more innovative areas. Second, OpenStack 
allows for native L2 networking, whereas Kubernetes default networking plugins are based on building L3 
and above networking abstractions [8]. Native L2 networking fits better the 5G-CLARITY slicing approach, 
where transport slicing is implemented using VLANs. The study on how to integrate a VLAN based transport 
slicing approach with a cloud native edge compute cluster is left for future works. 
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Figure 2.11. 5G-CLARITY compute slicing approach  

OpenStack is already a multitenant platform where different tenants can be allocated separate compute 
(virtual CPUs), storage and memory (RAM) quotas based on the concept of OpenStack projects [9]. Thus, the 
OpenStack project is the basic OpenStack capability leveraged by the Slice Manager in 5G-CLARITY to allocate 
separate compute resources to separate slices. Subsequently, multiple OpenStack projects can be attached 
to an NFV orchestrator that can support different VIM accounts. This is the case of Open Source MANO (OSM) 
version 7 [10], which is the NFV orchestrator adopted in 5G-CLARITY. Figure 2.11 describes the process used 
by the 5G-CLARITY slice manager to configure OpenStack projects and attach them to OSM using different 
VIM accounts. 

 Transport slicing  

After configuring wireless and compute devices the service and slice provisioning system configures the 
transport network to isolate the traffic generated by the RAN and compute slices in the transport network. 
The underlying transport technology in a 5G-CLARITY system is IEEE 802.1, which can be divided into i) 
standard Ethernet switching; and (ii) Ethernet with Time Sensitive Network (TSN) support. Being Ethernet 
the default transport technology, the natural choice is to use VLAN as the means to isolate 5G-CLARITY slices 
over the common transport network. How the service and slice provisioning subsystem configures VLANs in 
the underlaying transport network while considering the default and TSN Ethernet cases is described next. 

Figure 2.12 depicts the steps and MFs involved in the provisioning of a 5G-CLARITY slice when using a default 
Ethernet transport network. The following network management agents are required in the different devices: 

• Ethernet switching gear: NETCONF support is required to be able to create VLANs and attach them 
to a specific interface. 

• RAN devices: Assuming these devices run a Linux OS, NETCONF is used that allows to create a VLAN 
interface and assign an IP address on the configured interface. See for example the “wired.yang” 
model used in the I2CAT Wi-Fi boxes described in Section 2.1.1.1.2. 

• RAN cluster: A Kubernetes based deployment is assumed using the MULTUS CNI [11], which enables 
to bind a specific interface on the bare metal to a given Kubernetes pod. A NETCONF agent in the 
bare metal is used to create the VLAN interface that needs to be connected to the pods serving that 
slice (e.g., a CU-UP pod set up to serve that slice). Despite not being as “VLAN friendly” as OpenStack, 
Kubernetes is chosen in the RAN cluster since it is aligned to the O-RAN architecture. 

• Edge cluster: The OpenStack Neutron agent [12] is used to create a virtual network inside the 
OpenStack cluster that is connected to an infrastructure VLAN. 

Thus, the steps followed by the service and slice provisioning subsystem to configure the transport network 
upon a slice creation are depicted in Figure 2.12 and described here: 
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Figure 2.12. Transport slicing using standard Ethernet switches (only one switch is shown for simplicity) 

 

• Steps 1 and 2: The Slice Manager configures the VLANs in the underlaying transport. This is 
accomplished by having the Slice Manager select the VLANs required for each segment, namely, i) a 
midhaul VLAN connecting the DU to the RAN cluster node where the CU is provisioned, ii) a backhaul 
VLAN connecting the CU in the RAN cluster to the UPF in the Edge cluster, and iii) a service VLAN 
connecting the Wi-Fi and LiFi nodes to the N3IWF in the edge cluster. The Slice Manager 
communicates these VLANs to the Transport Controller, which implements the NETCONF client to 
configure the underlaying switches. Notice that the Transport Controller maintains a network 
topology and understands what devices are connected to each network port, using for example LLDP 
[13]. 

• Step 3: The Slice Manager interacts with the edge cluster to create virtual networks corresponding 
to the service network and the backhaul network for this slice. These virtual networks are connected 
to the underlying VLANs configured in the previous step. 

• Step 4: The Slice Manager interacts with the RAN cluster to create the mid-haul VLAN interfaces 
required to support this slice, as well as connecting them to the appropriate pod using the MULTUS 
CNI. 

• Steps 5 and 6: As last steps, the Slice Manager interacts with the multi-WAT non-RT controller to 
deploy the wireless service, providing the backhaul/service VLANs where the wireless services need 
to be connected to. The multi-WAT non-RT controller includes a NETCONF client used to configure 
the requested VLAN interfaces in the RAN devices. 

When using a TSN transport network, the process of deploying a 5G-CLARITY slice becomes more complex 
as the slice configurations related to the deterministic QoS provision must be carried out. The steps shown 
in Figure 2.12 are preserved, but steps 1 and 2 might be further decomposed to reflect these QoS related 
configurations. Since we consider a fully centralized (SDN-like) architecture for TSN, the transport controller 
includes the TSN control plane components, namely, Centralized User Configuration (CUC) and Centralized 
Network Controller (CNC). We also assume that these components are unaware of the 5G-CLARITY slice. 
Under these considerations, the following additional steps are required to perform the QoS configuration of 
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the slice: 

• The slice manager, playing the roles of listeners/talkers, communicates the streams QoS 
requirements of the respective 5G-CLARITY slice to the CUC. The CUC interprets these requirements 
and might combine them with those from other slices.  

• The CUC communicates the composed streams requirements to the CNC via a user/network 
configuration protocol. Then, the CNC performs the computation of the network configuration in 
order to accommodate the incoming 5G-CLARITY slice, i.e., to allocate the required resources (e.g., 
per link bandwidth and buffer space at each TSN bridge port), while ensuring its QoS requirements 
and those of the ongoing 5G-CLARITY slices are met. Note that, depending on the specific algorithm 
used for computing the configuration, the configuration of the 5G-CLARITY slices previously 
accommodated might also change. Last, the configuration algorithm might require data analytics to 
estimate the foreseen traffic matrix and temporal traffic profiles and adapt the configuration 
accordingly. It also might be assisted by the AI-engine, e.g., the AI-engine executes a ML learning 
algorithm that assists the master TSN configuration computation algorithm running in the CNC, in 
order to cope with the configuration complexity of the TSN networks.    

• The CNC populates the computed QoS related configuration to the different TSN bridges. More 
precisely, the output port of each TSN bridge has to be configured. As each 5G-CLARITY slice is 
uniquely identified by a VLAN ID at a given transport network segment, we consider the CNC provides 
a configuration per VLAN. For instance, considering a synchronous TSN network based on the Time 
Aware Shaper (IEEE 802.1Qbv), it is required to configure the Gate Control List (GCL) per output port. 
This involves splitting the time into windows, each with a specific duration and deciding which VLANs 
can transmit data at a given time window. Furthermore, the priority level per TSN bridge of each 
VLAN shall be chosen for configuring the strict priority transmission selection algorithm if applicable. 
Besides the aforementioned configurations, the per-stream filtering and policing stage includes 
additional configurations (e.g., traffic regulation and maximum transfer unit). 

 5G-CLARITY service and slice provisioning: interface design 

Figure 2.13, first provided in 5G-CLARITY D4.1 [1], depicts the internal architecture of the 5G-CLARITY slice 
and service support system. In this section, two of the main MFs within this architecture, namely the Slice 
Manager and the multi-WAT non-RT RIC, are described in more details by looking at the interfaces they offer. 

2.1.1.4.1 Service interface from multi-WAT non-RT RIC 

The multi-WAT non-RT RIC manages the underlying RAN technologies via NETCONF, as it was described in 
Section 2.1.1.1. In the north-bound, the multi-WAT non-RT RIC exposes a set of REST end-points that allow 
other MFs in the slice and service support system to make use of these services.  

Table 2-1, introduced in 5G-CLARITY D2.2 [2], describes the services exposed by the multi-WAT non-RT RIC 
highlighting in green the services that are available at the time of writing this deliverable. 
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Figure 2.13. Architecture of 5G-CLARITY slice and service support system [1] 

 

Table 2-1. Multi-WAT non-RT RIC Services 

MF Service ID MF Service Name Description 
Reference 

Specifications 

Mwat_Plmn_Lc
m 

PLMNID lifecycle 
management 

This service allows instructing a gNB-DU to radiate a 
PLMN ID in a set of gNB-DUs under the control of that 
gNB-CU. In addition, it provisions the IP end-point 
associated with that PLMN ID 

Custom (REST) 

Mwat_Snssai_L
cm 

S-NSSAI lifecycle 
management 

This service allows instructing a gNB-CU to radiate a 
S-NSSAI in a set of DUs under the control of t gNB-CU 

Custom (REST) 

Mwat_Wi-
Fi_Ssid_Lcm 

Wi-Fi SSID lifecycle 
management 

This service allows instructing one or more Wi-Fi APs 
to radiate a SSID with a specific set of security 
credentials 

Custom (REST) 

Mwat_Lifi_Ssid
_Lcm 

LiFi SSID lifecycle 
management 

This service allows instructing one or more LiFi APs to 
radiate a SSID with a specific set of security 
credentials 

Custom (REST) 

Mwat_Plmn_Re
s_Rsrv 

PLMNID resource 
reservation service 

This service allows allocating a percentage of Physical 
Resource Blocks (PRBs) in a set of gNB-DU under the 
control of the target gNB-CU, in order to carry the 
traffic of a given PLMN ID 

Custom (REST) 

Mwat_Snssai_R S-NSSAI resource This service allows allocating a percentage of Physical Custom (REST) 
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es_Rsrv reservation service Resource Blocks (PRBs) in a set of gNB-DUs under the 
control of the target gNB-CU, in order to carry the 
traffic of a given S-NSSAI 

Mwat_Wi-
Fi_Ssid_Res_Rsr

v 

Wi-Fi SSID resource 
reservation service 

This service allows allocating a percentage of airtime 
resources in one or more APs to carry the traffic of 
the provided SSID 

Custom (REST) 

Mwat_Lifi_Ssid
_Res_Rsrv 

LiFi SSID resource 
reservation service 

This service allows allocating a percentage of airtime 
resources in one or more APs to carry the traffic of 
the provided SSID 

Custom (REST) 

Mwat_5gnr_Cel
l_Conf 

5GNR Cell 
configuration service 

This service enables the configuration of a set of 
5GNR cells under the control of a gNB-CU including 
parameters such as carrier frequency, cell identifier, 
transmission power and neighbour lists 

Custom (REST) 

Mwat_Wi-
Fi_Ap_Conf 

Wi-Fi AP 
configuration service 

This service enables the configuration of one or more 
APs including parameters such as the operating 
channel and bonding mode, the Wi-Fi mode (e.g.VHT, 
HT, a/b/g) and the transmission power 

Custom (REST) 

Mwat_Lifi_Ap_
Conf 

LiFi AP configuration 
service 

This service enables the configuration of one or more 
APs including parameters on device info, WLAN 
configuration and Lamp configuration 

Custom (REST) 

Mwat_5gnr_To
po 

5GNR topology 
service 

This service allows providing 5GNR physical topology 
including list of cells connected to a given gNB-DU 
instance, and list of gNB-instances connected to a 
given gNB-CU instance 

Custom (REST) 

Mwat_Wi-
Fi_Topo 

Wi-Fi topology 
service 

This service allows providing Wi-Fi topology 
information including list of physical AP appliances 
and the capabilities of the physical radios included in 
each AP 

Custom (REST) 

Mwat_Lifi_Top
o 

LiFi topology service 
This service allows providing a list of the available 
physical LiFi AP appliances 

Custom (REST) 

Mwat_Ric_Mg
mt 

5GNR rtRIC 
management service 

This service allows providing a list of rt-RIC instances 
controlled by the mWAT Non-rt Controller. It enables 
operations such as policy management, and xAPP 
management 

O-RAN based 
(REST) 

Mwat_Wi-
Fi_Ric_Mgmt 

Wi-Fi-LiFi rt 
controller 

management service 

This service allows providing a list of Wi-Fi/LiFi real 
time controllers managed by the mWAT Non-rt 
Controller. Enables deployment of policies into Wi-
Fi/LiFi real time controllers 

Custom (REST) 

Mwat_Inventor
y 

Inventory Service 

This service allows returning a data structure 
containing a list of the currently active wireless 
services including the service identifier (PLMN ID, S-
NSSAI, and SSID), their resource quota and the nodes 
where the service is active 

Custom (REST) 

For the sake of space, we will not describe each of the services in detail, but rather focus on a subset of them. 
Figure 2.14 provides an example of a wireless service definition triggered by the slice manager towards the 
multi-WAT non-RT RIC. We can see: 
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• “selectedPhys”: populated with information that the Slice Manager obtains through the topology 
service (not shown here). The field will indicate: 

o List of Wi-Fi radios that are part of this service. Notice that a single Wi-Fi AP can have more 
than one radio 

o List of LiFi APs that are part of this service 

o List of 4G/5GNR cells that are part of this service 

• “wirelessConfig”: specifies the configuration of the Wi-Fi and Li-Fi services including SSID and 
security credentials. The “vlanId” identifies the VLAN that the traffic connecting to this SSID needs 
to be connected to. In addition, to control resource allocation in Wi-Fi two parameters are supported: 

o The “airtimeWeight” parameter allows to control the percentage of airtime allocated to this 
service.  

o The “contentionWindowIncrease” field can be used to control the Contention Window size 
used by devices connecting to this Wi-Fi service. Finally, the “vlanId” identifies the VLAN that 
the traffic connecting to this SSID needs to be connected to. 

• “CellularConfig”: specifies the parameters related to the configuration of the cellular service. In 
Figure 2.14 only PLMN-based slicing is supported, and so the “plmnId” fields indicates the PLMN that 
needs to be added to the PLMN list of the selected cells. Additional configuration parameters include 
the “coreAddress” field that indicates the IP address of the virtual core this slice needs to be 
connected to.   

 
Figure 2.14. Sample call from Slice Manager to non-RT multi-WAT Controller  
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Table 2-2. Slice Manager Services  

MF Service ID 
MF Service 

Name 
Description 

Reference 
Specifications 

Sm_Sl_Rsrv 

5G-CLARITY 
Slice 

reservation 
service 

This service receives as input: 
• Target VIM nodes and compute resource quota 
• A set of gNB-DUs and PLMN ID to be instantiated 
• A set of Wi-Fi and LiFi APs and SSIDs to be instantiated 

Based on this input the Slice Manager configures the 
resource reservation in the VIM, and instantiates the 
wireless services in the target WATs 

Custom 
(REST) 

Sm_Sl_Actv 
5G-CLARITY 

Slice activation 
service 

This service receives as input an NSD identifier, which has 
been previously on-boarded on to the NFVO, and a 5G-
CLARITY slice identifier, and instantiates the target NSD on 
the VIM resources provisioned for that slice 

Custom 
(REST) 

Sm_Srv_Inst 
Service 

Instantiation 

This service receives as input an NSD identifier, which has 
been previously on-boarded on to the NFVO, and a 5G-
CLARITY slice identifier, and instantiates the target NSD on 
the VIM resources provisioned for that slice 

 

Sm_Sl_Inv 
5G-CLARITY 

Slice inventory 

This service returns a data structure containing the list of 
slices currently deployed in the system along with the 
corresponding slice descriptors 

Custom 
(REST) 

 

2.1.1.4.2 Service interface exposed by Slice Manager 

The services exposed by the Slice Manager function are examined in this section, where Table 2-2 indicates 
the Slice Manager services identified in 5G-CLARITY D2.2 [2], highlighting in green the services discussed in 
this section. Note that service “Sm_Srv_Inst” has been added with respect to D2.2.  

The slice reservation service is used to reserve a set of compute and radio resources to be part of that slice. 
This is made available in the slice manager through the concept of radio and compute “chunks”. An example 
of these is represented in Figure 2.15, where the following components are observed: 

• Radio chunk: Contains a set of physical ineterfaces, which can be of type cellular, Wi-Fi or LiFi. 

• Compute chunk: includes a “compute_id” indicating the physical compute node that will be part of 
the chunk, as well as the resource requirements in terms of CPUs, RAM and storage.  
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Figure 2.15. Sample radio chunk (left) and compute chunk (right) endpoints available in Slice Manager 

 

Figure 2.16. Sample radio service (left) and compute service (right) endpoints available in Slice Manager 

 

Figure 2.16 describes the Slice Manager APIs exposed for the slice activation service (left) and the service 
instantiation service (right). For the slice activation the following fields are required. First, the “plmnId” 
configured in the virtual core that will be instantiated as part of this slice. The “slice3_id” field linking to the 
previously created slice, i.e., concatenation of the compute and radio chunks. Additional service parameters 
related to the Wi-Fi and LiFi networks.  

For the service instantiation service, Figure 2.16 (right) describes the required fields, where it is worth 
highlighting the “network_service_id” field that contains the identifier of a network service that has been 
previously onboarded on to the OSM instance, and the “slice3_id” that is used to select the VIM account that 
will be used to host this service (c.f. Section 2.1.1.2).  
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 5G-CLARITY service and slice provisioning: quotas and core network support 

After discussing how the 5G-CLARITY service and slice provisioning subsystem configures the physical 
infrastructure to serve different slices, this section discussed how slice isolation could be achieved through 
various network domains. 

 Wireless slicing 

The instantiation of a 5G-CLARITY slice requires the allocation of resource chunks for individual resource-
facing services (i.e., 5G-CLARITY wireless, transport and compute services). A resource chunk is defined as a 
set of resources of the same type which allows the performance requirements of a resource-facing service 
are met. To meet these requirements, the 5G-CLARITY slice provider needs to compute the specific amount 
of resources for each chunk. This amount of resources is referred to as resource quota. The definition of 
resource quota for every 5G-CLARITY slice must be detailed for each constituent 5G-CLARITY resource-facing 
service. 

For slicing at the access, 5G-CLARITY wireless services need to be provisioned with needed resource quotas. 
A 5G-CLARITY wireless quota is the set of wireless resources which are allocated in each AP which serves a 
specific 5G-CLARITY wireless service. This quota could be dedicated, minimum or maximum.  

• 5G-CLARITY wireless dedicated quota: defines the wireless resources which are dedicated for a 5G-
CLARITY wireless service.  These wireless resources cannot be shared even if the associated 5G-
CLARITY wireless service does not use them throughout its lifetime.  

• 5G-CLARITY wireless minimum quota: defines the minimum wireless resources, including the 
dedicated and prioritized wireless resources for each 5G-CLARITY wireless service.  Prioritized 
wireless resources are those that are preferentially used by the associated 5G-CLARITY wireless 
service. When prioritized resources are not used, other 5G-CLARITY wireless services could use them. 
The goal of this quota is to guarantee a minimum capacity for each 5G-CLARITY wireless service in a 
situation of resource scarcity. 

• 5G-CLARITY wireless maximum quota: defines the maximum wireless resources, including dedicated, 
prioritized and shared wireless resources for each 5G-CLARITY wireless service. Shared wireless 
resources are those which are shared among all the existing 5G-CLARITY wireless services. This 
means the shared wireless radio resources may not be guaranteed for the slices throughout their 
lifetime. The availability of these resources will depend on the system load conditions at a given time. 
The goal of this quota is to ensure each 5G-CLARITY wireless service cannot consume more capacity 
than an upper bound defined by the 5G-CLARITY slice provider.  

When the WAT supported by the 5G-CLARITY wireless service consists of LTE/5GNR nodes, the wireless 
resources correspond to PRBs. If the WAT supported by the wireless service consists of Wi-Fi APs, the 
wireless resources correspond to the percentage of airtime consumption. Finally, if the WAT supported by 
the wireless service consists of LiFi APs, the wireless resources are specific wavelengths and/or airtime on a 
wavelength.  

The 5G-CLARITY slice provider computes the 5G-CLARITY wireless quotas before deploying the 5G-CLARITY 
wireless services. Furthermore, it can also tune them dynamically throughout the lifetime of each wireless 
service. To that end, the 5G-CLARITY slice provider can use different mathematical tools such as game theory, 
heuristics or machine learning algorithms (we propose some algorithms in Section 3). Below, we describe 
some key steps to derive the 5G-CLARITY wireless quotas, and provide an illustrative example using game 
theory. 

First, the 5G-CLARITY slice provider needs to determine the time period when the wireless infrastructure is 
most congested (e.g., maximum inter-cell interference levels in the 5GNR/LTE gNB/eNB. This is a challenging 
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task because the 5G-CLARITY slice provider needs to, i) consider the lifetimes of the 5G-CLARITY wireless 
services, which could be partially overlapped over time, and ii) estimate the traffic intensity experienced by 
each 5G-CLARITY wireless service throughout its lifetime.  

Once the congested period is identified, the 5G-CLARITY slice provider translates the performance 
requirements of each 5G-CLARITY wireless service into the specific amount of wireless resources required in 
each access node. For example, knowing the inter-cell interference levels in the 5GNR-gNB/LTE-eNB for the 
worst-case scenario, the 5G-CLARITY slice provider can estimate the amount of PRBs required by each 5G-
CLARITY 5GNR/LTE node to meet a guaranteed aggregated throughput and a maximum aggregated 
throughput. This means computing the 5G-CLARITY wireless minimum and maximum quotas, respectively. 

To perform this translation, the 5G-CLARITY slice provider must optimize the allocation of wireless resources 
for individual 5G-CLARITY wireless services in each AP, with the aim of accommodating all these wireless 
services in an efficient way. For instance, focusing on 5GNR/LTE nodes, the 5G-CLARITY slice provider can 
minimize the inter-cell interference levels to allocate the minimum number of PRBs per 5G-CLARITY wireless 
service and thus, allowing more 5G-CLARITY wireless services to be accommodated into the private wireless 
infrastructure. When the 5G-CLARITY slice provider deploys a specific 5G-CLARITY wireless service, the 
wireless resource management algorithms (i.e., those defined in deliverable D3.2 [14]) dynamically allocate 
wireless resources according to the computed 5G-CLARITY wireless quota for each access node. This means 
these algorithms use these quotas as input constrains. For instance, the 5G-CLARITY wireless maximum 
quota avoids a wireless resource management algorithm allocates for a 5G-CLARITY wireless service more 
than a specific amount of wireless resources throughout its lifetime. 

For the sake of clarity, we provide an illustrative example of how the 5G-CLARITY slice provider could proceed 
to compute the quotas, specifically the 5G-CLARITY wireless minimum quotas. Assuming the 5G-CLARITY slice 
provider plans the deployment a set ℳ of 5G-CLARITY wireless services with stringent requirements in terms 
of Guaranteed Bit Rate (GBR), we can formulate the radio resource allocation problem as Eq. (1) shows. The 
operator |⋅| denotes the cardinality of a set (the number of elements in this set).  The parameter 𝑆𝑆𝑖𝑖 is the 
PRB allocation for the |ℳ| 5G-CLARITY wireless services in the 5G cell 𝑖𝑖 ∈ ℐ  which minimize the max(⋅) 
function.  The parameter 𝒮𝒮𝑖𝑖  denotes the set of all the possible combinations of PRB allocation for each 5G-
CLARITY wireless service. Finally, 𝐵𝐵�𝑚𝑚 𝐵𝐵𝑖𝑖,𝑚𝑚  and 𝐵𝐵th are the average UE blocking probability for 5G-CLARITY 
wireless service 𝑚𝑚, the UE blocking probability for 5G-CLARITY wireless service 𝑚𝑚 in the 5G cell 𝑖𝑖, and the 
upper bound for the UE blocking probability, respectively. Note that 𝐵𝐵�𝑚𝑚 = ∑ 𝜔𝜔𝑖𝑖,𝑚𝑚𝐵𝐵𝑖𝑖,𝑚𝑚 𝑖𝑖∈ℐ , where 𝜔𝜔𝑖𝑖,𝑚𝑚 is the 
probability that a GBR session for the for 5G-CLARITY wireless service 𝑚𝑚  is established in the 5G cell 𝑖𝑖.  

 min
𝑆𝑆𝑖𝑖∈𝒮𝒮𝑖𝑖 ∀𝑖𝑖∈ℐ

max�𝐵𝐵�1,𝐵𝐵�2, … ,𝐵𝐵�𝑚𝑚, … ,𝐵𝐵�|ℳ|� 

s. t.   𝐵𝐵𝑖𝑖,𝑚𝑚 ≤ 𝐵𝐵th ∀𝑚𝑚 ∈ ℳ,∀𝑖𝑖 ∈ ℐ 
(1) 

This equation aims to minimize the average UE blocking probability 𝐵𝐵�𝑚𝑚′   (i.e., probability that a UE cannot 
establish a GBR session in the considered access network) of the 5G-CLARITY wireless service 𝑚𝑚′ which has 
the highest value for this parameter. Furthermore, the provided constraint enforces the UE blocking 
probability 𝐵𝐵𝑖𝑖,𝑚𝑚 for each 5G-CLARITY wireless service 𝑚𝑚 in each 5G cell 𝑖𝑖 is below an upper bound 𝐵𝐵th. This 
upper bound is way of guaranteeing an accessibility level for each 5G-CLARITY wireless service.  

Solving the formulated problem can be seen as a combinatorial optimization, based on allocating specific 
PRBs for all the 5G-CLARITY wireless services in each 5G cell while Eq. (1)  is minimized. On the one hand, 
since performing an exhaustive search to find the optimal solution is not computationally tractable, as an 
alternative, searching a local optimum in an iterative way is a better option. For instance, by using game 
theory to model the formulated problem, we can find a local optimum by determining a Nash Equilibrium 
solution. On the other hand, the specific PRB allocation and the interference levels computed in each 
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iteration must be translated into the UE blocking probability for each 5G-CLARITY wireless service. To that 
end, valuable models as the one proposed in [15]  can be used.  

Figure 2.17 illustrates the results obtained with a potential game to compute the 5G-CLARITY wireless 
minimum quotas for three 5G-CLARITY wireless services. Specifically, Figure 2.17(a) shows the specific 
allocation of PRB chunks (i.e., a set of consecutive PRBs) which minimize the inter-cell interference levels. An 
algorithm to minimize these levels can be found in [16]. In Figure 2.17(b), we illustrate the 5G-CLARITY 
wireless minimum quotas in each 5G cell, i.e., the percentage of PRB chunks allocated for each 5G-CLARITY 
wireless service. Finally, Figure 2.17(c) shows how the computed quotas satisfy Eq. (1) when the 5G-CLARITY 
slice provider sets 𝐵𝐵th = 0.01.  

 

 
Figure 2.17. Example of 5G-CLARITY wireless minimum quotas for three 5G-CLARITY wireless NR services in each NR 
cell, (a) PRB chunk allocation, (b) 5G-CLARITY Wireless Minimum Quotas, (c) UE blocking probability.service (right) 

endpoints available in Slice Manager 

 

 Transport slicing 

There are several challenges to realize the transport slicing concept in 5G-CLARITY that features a transport 
network (TN) that might combine multiple technologies, including standard Ethernet and TSN. In this regard, 
an SDN controller (SDNC) able to integrate these technologies and hide the TN configuration complexity from 
the service and slice orchestration subsystem is needed. The management services exposed by the SDNC 
through the northbound interface were defined in 5G-CLARITY D2.2 [2] to enable the provision of both virtual 
networks and connectivity services, as well as the cross-coordination between the TN and the rest of the 5G-
CLARITY domains. The latter is crucial to ensure the cohesion and feasibility of the configurations of the 
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different domains.  

This section delves deeper into the details of the 5G-CLARITY slices isolation assurance and QoS provision in 
the transport network. More precisely, it covers the mechanisms to provide isolation and QoS provision for 
5G-CLARITY slices when TSN is used as the L2 transport network technology. Furthermore, technical 
requirements to enable the integration of the TSN-based transport network with the 5G system are identified. 

One of the key features of the 5G-CLARITY slices is their high degree of isolation, which is especially suitable 
for multitenancy. The key ingredients in the 5G-CLARITY system to provide such a degree of isolation in the 
TN are, i) the use of dedicated VLANs for separate 5G-CLARITY slices, and ii) the resource quota concept for 
the transport service, based on the reservation of some TN resources (e.g., links capacities and buffer space 
at the TN devices egress ports) for a specific slice. The resource quota along with other TN configurations 
(e.g., 5G streams-to-priority levels mapping) must guarantee the 5G-CLARITY slice QoS requirements, which 
might be expressed in terms of upper bounds for the latency, jitter delay and frame loss ratio and a lower 
bound for the reliability. A certain level of reliability is ensured through frame replication and forwarding 
through disjoint paths (path redundancy).  

The computation of the transport resource quotas allocated to each 5G-CLARITY slice is a computationally 
complex task, especially for TSN networks, that might need to be assisted by ML algorithms deployed at the 
5G-CLARITY intelligence stratum. Furthermore, the transport resource quotas for a given 5G-CLARITY slice 
might change over time because of either traffic demand fluctuation or UEs mobility. To deal with this issue, 
proactive algorithms for the TN configuration and resource allocation that harness historical data might be 
used.  

To illustrate the transport network quota concept, we consider here the scenario depicted in Figure 2.18. In 
the scenario, there is an asynchronous TSN network acting as backhaul. There are three 5G-CLARITY slices to 
be allocated whose primary traffic characteristics and QoS requisites are summarized in Table 2-3. The 
definitions of these characteristics and performance requisites are included below: 

• Average flow rate: Average sustainable data rate generated by a flow of the respective 5G-CLARITY 
slice. 

• Flow burstiness (burst size): Maximum amount of data generated at a given time instant by any flow 
of the 5G-CLARITY slice. 

• Maximum packet size: The largest packet size generated by any flow of the 5G-CLARITY slice. 

• TN delay budget: The maximum allowed delay for conveying a packet from its source to its destination in 

• TN jitter budget: The maximum allowed variation in time delay for conveying a packet of a flow from 
its source to its destination in the TN. 

• Reliability requisite: The required probability of success for the TN to seamlessly transport the traffic 
of a flow while fulfilling its throughput, delay budget and jitter budget requirements.  

• Average flow duration: The mean flow lifetime in the network. 

For this setup, the backhaul network resource quotas specification comprises the capacity allocated and the 
buffer space reserved for each slice at each link and asynchronous traffic shaper (ATS), which is the building 
block of the asynchronous TSN networks used to handle the transmission of the frames at a given link, 
respectively. 

 



D4.2 – Validation of 5G-CLARITY SDN/NFV Platform, Interface Design 
            with 5G Service Platform, and Initial Evaluation of ML Algorithms  

46 

 
5G-CLARITY [H2020-871428] 

 
Figure 2.18. Scenario considered to illustrate the 5G-CLARITY transport network quotas computation 

Table 2-3. Traffic Characteristics for Slices Used to Compute the Transport Network Quotas  

5G-CLARITY 
Slice 

Avg. Flow 
Rate 

Flow 
Burstiness 

Max. 
Packet Size 

TN Delay 
Budget 

TN Jitter 
Budget 

Reliability 
Requisite 

Avg. Flow 
Duration  

Slice #1 1.55 Mbps 324 bytes 324 bytes 1 ms 1 ms 0.99 28800 s 

Slice #2 20 Mbps 25000 
bytes 1500 bytes 10 ms 10 ms 0.95 3600 s 

Slice #3 0.05 Mbps 186 bytes 186 bytes 20 ms 20 ms 0.95 28800 s 

The optimization is aimed to drive the backhaul resource quota computation to minimize the overall flow 
rejection probability of the network while ensuring the requisites in delay, jitter, and reliability for the 
different slices. There are further technological constraints related to the flows-to-shaped buffers 
assignment restrictions (refer to [17] and [18]), the size of the buffers, and link capacities. Table 2-4 includes 
the resource quotas allocated to each 5G-CLARITY slice for the downlink. Please note that the same 
configuration is shared among all the ATSs/links  as the considered backhaul network has a daisy chain 
topology. Given the resource quotas in Table 2-4, Figure 2.19 and Table 2-5 show the flow rejection 
probability and maximum delay experienced for each 5G-CLARITY slice, respectively. Observe that the 
backhaul network delay budgets are met for all the flows. Last, although we have considered here a lenient 
reliability requisite for every slice and one path is enough to ensure it, for a different setup, transmitting the 
packets through several disjoint paths using the Frame Replication and Elimination for Reliability (FRER) TSN 
capability might be required.  

 
Table 2-4. Transport network quotas for each 5G-CLARITY5G-CLARITY slice 

5G-CLARITY Slice Allocated Link Capacity at 
Each Link (ATS) [Mbps] 

Buffer Size at Each ATS 
[kB] 

Priority Level 

Slice #1 283.65 59.3 1 
Slice #2 340 425 2 
Slice #3 119.2 443.5 3 

 

 

 
Figure 2.19. Flow rejection probability perceived for each 5G-CLARITY slice given the transport network quotas  
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Table 2-5. Maximum Delay Experienced by Any Packet of Each 5G-CLARITY Slice Given the Transport Network 

5G-CLARITY Slice Maximum Packet Delay [ms] 
Slice #1 0.921 
Slice #2 18.07 
Slice #3 9.986 

 

The application of the right policies and QoS enforcement for the different 5G-CLARITY slices requires traffic 
differentiation at the edge nodes, i.e., those TSN bridges that are directly connected with a 5G entity (e.g., 
gNB and UPF) instance. For instance, stream identification at the boundaries of a TSN network has to be used. 
This way, each TN device can classify incoming frames to associate them with the corresponding 5G-CLARITY 
slices and apply the proper forwarding policies and QoS mechanisms. Then, for instance, the 5G-CLARITY 
slice each frame belongs to might be encoded in an immutable field of the IEEE 802.1Q header (e.g., VLAN 
ID). The flow metering in TSN standards uses stream IDs which includes the VLAN ID, and priority level to 
apply the predefined bandwidth profiles for each stream. Please note that the traffic classification might also 
be required for a bare IEEE 802.1Q (without TSN extensions), for instance, to apply traffic prioritization per 
traffic class at every network bridge.  

 Compute slicing: virtual core networks serving different slices 

Isolation in the 5G-CLARITY edge cluster is implemented using the concept of OpenStack projects described 
in Section 2.1.1.2.  In this section the 3GPP core network, deployed within a 5G-CLARITY compute chunk, and 
the way it is used to support 5G-CLARITY slicing is introduced. To this end two complementary approaches 
are discussed: 

• PLMNID-based slicing: used in multitenant scenarios, where each tenant is represented by a 
separate core with a specific PLMNID instantiated within a compute slice. This approach to slicing 
can be implemented either with a 4G EPC or with a 5GC. 

• PLMNID+SNSSAI-based slicing: used where slicing is required within a tenant. In this case a single 
PLMNID can be sliced into multiple S-NSSAIs. This approach to slicing requires a 5GC, since EPC does 
not support SNSSAI. 

Notice that both slicing models can be applied for standalone NPNs, and for PNI-NPNs. In this section though, 
the focus is on standalone NPNs. Figure 2.20 depicts the initial design for PLMNID-based slicing, where the 
following elements can be identified: 

• The Wi-Fi and LiFi nodes, which have a dedicated VLAN for each deployed slice. In Figure 2.20 two 
slices can be observed, i.e., slice 1 (yellow) and slice 2 (pink). 

• 4G/5GNR Accelleran small cells, which have a dedicated VLAN for the F1 interface connecting them 
to the CU function located in the RAN cluster. 

• The RAN cluster, which features a Kubernetes over bare metal implementation hosting the dRAX RIC 
from Accelleran. The RIC has separate namespaces for the L3 pods that support 4G small cells, the 
CU pods supporting 5GNR small cells, and a separate namespace hosting dRAX services. The RAN 
cluster has two physical Ethernet interfaces. One is used for management services (blue), and the 
other is used to carry all the S1 and F1 traffic for the different slices (green). In future 
implementations it will be tried to map the S1 traffic from different 5G-CLARITY slices to different 
transport VLANs to achieve slice separation also in the transport network. Isolating the F1 interface 
in the transport is more complex as the L3/CU pods are shared across slices. 

• The Edge cluster features an OpenStack deployment hosting a virtual core (vEPC in the figure) per 
slice. Each per-slice core is provisioned within an OpenStack project, as described in Section 2.1.1.2. 
All virtual core have two network interfaces. First, a network interface connected to the network 
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used to carry the S1 traffic (green network). Second, shown in yellow and pink, a network interface 
connected to the service network for that slice providing local breakout. We can see that the Wi-Fi 
and LiFi nodes have each slice directly connecting to the service network in the Edge cluster. The 
service network also hosts virtual applications (vAPPs) connected to each slice.  

 
Figure 2.20. 5G-CLARITY approach to PLMNID-based slicing 

 

A prototype of the “PLMNID-based slicing” model has been developed and a preliminary evaluation is 
reported in Section 2.1.3. 

A preliminary design of the approach to “PMNID+SNSSAI-based slicing” is presented in this section, which 
will allow a single tenant to support multiple slices under the same PLMNID, each slice identified with an S-
NSSAI.  

Figure 2.21 shows the initial approach to PMNID+SNSSAI-based slicing, describing how multiple 3GPP S-
NSSAI slices can be deployed within a single PLMN instantiate over the 5G-CLARITY infrastructure stratum, 
comprising the DUs, the RAN cluster and the Edge cluster.  

In Figure 2.21 one PLMN is instantiated that offers two slices, where each slice served multiple Data Network 
Names. The configuration used herein is captured in Table 2-6. In addition, each slice is served by a separated 
SMf and a dedicated CU-UP. 

Table 2-6. Slice Configuration 

5G-CLARITY Slice Identifier Serving Data Network Name 

Slice #1 S-NSSAI#1: {SST=1, SD=n/a} 
DNN1 through UPF1 
DNN2 through UPF2 

Slice #2 S-NSSAI#2: {SST=1, SD=2} DNN12 through UPF12 
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Based on the previous specification, various slice components could be mapped to the compute chunks 
defined in the 5G-CLARITY slicing model as: 

• Edge cluster 

o Compute chunk 1 (green): used to instantiate the PLMN control plane (AMF and UDM), as 
well as the SMF for slice 1 and the UPF serving DNN1. This can be considered the basic system 
required to support the PLMN. 

o Compute chunk 2 (orange): used to support the UPF and application services for DNN2. This 
compute chunk would have a separate CPU/RAM/storage quota than compute chunk 1, thus 
providing service level isolation between DNN1 and DNN2. 

o Compute chunk 3 (blue): supports the SMF deployment for slice 2, as well as the UPF and 
application services for DNN12. 

• RAN cluster 

o Compute chunk 1 (green): used to support the control plane, CU-CP, as well as the default 
user plane serving slice 1. 

o Compute chunk 2 (blue): used to instantiate the user plane for slice 2, thus achieving user 
plane isolation between slice 1 and slice 2. 

Alternative mappings between the 3GPP network functions and the 5G-CLARITY compute chunks defined in 
the Edge and RAN cluster are possible. The PLMNID-based slicing model will be pursued and an experimental 
demonstration will be provided in 5G-CLARITY D4.3. 

 
Figure 2.21. Potential implementation of PLMNID+SNSSAI-based slicing 
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 5G-CLARITY service and slice provisioning subsystem: preliminary evaluation  

This section presents a preliminary evaluation of the time required to provision 5G-CLARITY infrastructure 
slice following the PLMNID-based slicing model described in Section 2.1.2.3. The evaluation of 
PMNID+SNSSAI-based slicing model will be performed and report in the next deliverable. 

To evaluate the time required to provision 5G-CLARITY slices a testbed featuring NETCONF enabled wireless 
nodes is deployed including, i) a custom Wi-Fi AP provided by i2CAT, ii) a LiFi AP provided by pureLiFi, and iii) 
a 4G small cell provided by Accelleran. The 5GNR small cells were not available in the testbed but no 
significant differences are expected regarding the provisioning times. The testbed also includes an OpenStack 
based edge cluster and the components of the service and slice provisioning subsystem including an NFV 
orchestrator based on OSM.  

Given our focus on the PLMNID-based slicing model, the slice provisioning time is characterised by looking 
separately at the time to advertise new PLMNID and SSID services in the wireless technologies, and the time 
to provision the virtual network functions required to support the slices. In particular, the following 
parameters are defined: 

• LiFi/Wi-Fi-Prov: the time required to configure an SSID and a VLAN in the LiFi/Wi-Fi nodes using 
NETCONF, 

• 4G-Prov: the time required to add a PLMNID to the 4G cell using NETCONF, 

• vEPC-Prov: the time required to instantiate a virtual evolved packet core (vEPC) based on open5gs 
[19]  to support the traffic of the slice. The vEPC is provisioned directly on top of the OpenStack, 

• AT3S-Prov: the time required to provision a virtual AT3S proxy used to support the multi-connectivity 
framework defined in 5G-CLARITY D3.2 [14]). This virtual function is deployed as a VNF using the NFV 
MANO orchestrator.     

Figure 2.22 depicts the Cumulative Density Function (CDF) of the provisioning times obtained from 50 
experiments. It can be observed that configuring a new SSID service in Wi-Fi and LiFi using NETCONF can be 
performed in less than 3 seconds, while configuring a PLMNID in the 4G cell requires almost 40 seconds as it 
involves a full system reboot. Deploying the vEPC and AT3S functions in the edge cluster involves booting 
virtual machines which requires between 10 and 20 seconds in our OpenStack based edge cluster 
deployment. The overall slice provisioning time can be extracted from the previous measurements in the 
following way. First, the vEPC needs to be provisioned, which takes around 20 seconds. Then, the AT3S 
function and all wireless technologies can be configured in parallel, dominated by the 4G-Prov time of around 
40 seconds. Thus, we can conclude that an end-to-end 5G-CLARITY slice including wireless, transport and 
compute services can be deployed in around 60 seconds. 
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Figure 2.22. Empirical times required to provision the various components of a 5G-CLARITY slice 

2.2 5G-CLARITY telemetry  

 Telemetry solutions 

 Data Lake 

In 5G-CLARITY D2.2 [2] and D4.1 [1], Data Lake is considered as one of the 5G-CLARITY solutions on data 
management and processing subsystem. The focus of the Data Lake is to centralize the data management 
and allow virtual unlimited data storage allowing a cost-effective management of data and its access. 
Analysing large data comes with a number of challenges, which include infrastructure, cost, storage and 
security. One solution to these challenges relies on cloud computing, which migrate the in-house 
infrastructure requirement to an external platform. In this section, we propose an AWS cloud-based 
approach. AWS is a cloud computing platform provided by Amazon. It comprises a multitude of services, 
which includes computing, networking, storage, database, analytics and IoT. The bulk of AWS services lie in 
the background and are not exposed to the consumer. These services are only utilized through API calls. This 
solution extends the telemetry handling to the cloud side via an edge premises. Data Lakes allow i) data-
based access controls which enables multiple roles within the same organization or external organizations 
to gain access to a specific data for a specific time; ii) running analytics without the need to move data to a 
separate analytics system; and iii) large data storages to be tiered based on access frequency. 
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Figure 2.23. Data Lake – initial solution implementation 

Figure 2.23 illustrates the overall framework of the AWS cloud-based data lake solution targeted in 5G-
CLARITY. The specific AWS services/components within the Data Lake and telemetry sources can be 
summarized as follows: 

• AWS IoT Greengrass seamlessly extends AWS to edge devices so they can act locally on the data 
they generate. Can run Docker containers, execute predictions based on ML models and 
communicate with other devices securely – even when not connected to the Internet. 

• AWS IoT Core is the entry point to the cloud for devices that run IoT Greengrass. 

• AWS Kinesis Firehose is used to capture, transform, and load streaming data continuously into AWS 
from data sources.  

• AWS Kinesis Analytics service allows you to process streaming data coming from IoT devices in real 
time with standard SQL. 

• AWS Lambda is a serverless compute service that lets you run code without provisioning or 
managing servers, creating workload-aware cluster scaling logic, maintaining event integrations, or 
managing runtimes. 

• AWS Simple Storage Service (S3) is an object storage service that offers scalability, data availability, 
security, and performance.  

• AWS Sagemaker offers an IDE to build, train and deploy ML models. 

 Data Semantics fabric 

The concept of Data Semantic Fabric allows consolidating data from a wide variety of sources and turn them 
into useful information consumers, by applying necessary processing on the collected data before their 
storage and/or transmission. As was captured in D2.2 and D4.1, this Data Fabric includes a set of logical 
nodes, each with a well-defined functional functionality: 

• The collector, responsible for data harvesting,  
• The aggregator, in charge of manipulating and combining individual data collected together, making 

them available for their consumption. This processing is done according to some rules (e.g., 
arithmetic operations, filtering, thresholding),  
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• The dispatcher, which sends aggregated data out to the target destination. This destination is where 
the data is stored for their consumption.  

Figure 2.24 shows an initial solution implementation for the Data Semantics Fabric. As seen, this solution 
leverages on the NGSI-LD framework (see details in deliverable D4.1), articulated into two main artifacts: i) 
the NSGI-LD Information Model entity, kept at NGSI-LD Context Broker, and which allows to deal with the 
fabric lifecycle management; and ii) the NGSI-LD API, which is the API that allows translating orders from the 
orchestrator to requests to the Data Semantics Fabric.  

 
Figure 2.24. Data Semantics fabric – initial solution implementation 

 

 
Figure 2.25. NGSI-LD information model 

On receiving the notifications from the NGSI-LD Context Broker, the weaver manages (instantiate, deploy, 
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upgrade, stop, delete) required agents on the collector and dispatcher, and configures the stream processing 
platform according to the content captured in the NGSI-LD information model. An example of this model is 
captured in Figure 2.25. On the one hand, the collector and dispatcher are both based on Apache NiFi  [20], 
which is reliable and secure data distribution system enabling a graph-oriented programming of data flows. 
Given that NiFi’s job is to bring data from wherever it is (data source), to wherever it needs to be (data 
consumer), it makes sense to bring data to and from Kafka. On the other hand, the stream processing 
platform is implemented with to Apache Flink [21], which is a framework and distributed engine for stateful 
computations over unbounded and bounded data streams. This processing can be based on stream 
processing (i.e., events are processed as they come) or micro-batch processing (i.e., all data is ingested 
before performing any computations).  

The typical scenario is illustrated in Figure 2.26. As seen, NiFi ingests data tom Kafka, which makes it available 
to Flink with the results being written back to a different Kafka topic where the NiFi is consuming from, and 
the result being delivered to intended data consumer.  

 
Figure 2.26. Data Flows 

 

 Telemetry data interfaces 

A set of candidate interfaces (northbound and southbound) that can be used between the telemetry 
solutions, namely the data lake and data semantic fabric, and other 5G-CLARITY architectural components 
such as AI engine, Intent engine,  RAN/dRAX and so on are discussed and compared. Figure 2.27 shows these 
interfaces. The section-interface mapping shown in the figure indicates the interfaces described in this 
deliverable. Details of the remaining interfaces will be provided in the next deliverable. 
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Figure 2.27. Interfaces between the Data Lake and other 5G-CLARITY architectural components 

The list of these interfaces is captured below: 

• From/to AI engine to/from Intent engine: will be covered in Section 5 – Intent Engine 
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• From Intent Engine to Data Lake: This is the interface that the Intent Engine requests/pulls data 
from the data lake based on any request from i) AI Engine regarding the ML models; or ii) private 
network operator to visualize network performance/analytics. 

• From Data Lake to Intent Engine: This is the interface that the Data Lake provides requested 
data/analytics information to the Intent Engine. 

• From AI Engine to Data Lake: The physical interface between the Data Lake and Intent Engine can 
be used to provide the request to the Data Lake. A logical interface (shown with a red dashed line) 
can be described between the AI Engine and Data Lake. 

• From Data Lake to AI Engine: The physical interface between the Data Lake and Intent Engine can 
be used to provide requested data to the AI engine. A logical interface (shown with a blue dashed 
line) can be described between the Data Lake and AI Engine. 

• From dRAX/Access Network to Data Lake: This interface provides network telemetry data (may also 
include UE telemetry) from dRAX/RAN to the Data Lake. 

• From Data Lake to dRAX: This is the interface to update an ML model based xApp residing in the 
dRAX. Training of the ML model can be carried out in the Data Lake or AI Engine and ML model 
updates can be pushed to dRAX RIC xApp via this interface. xApp onboarding can be done via REST 
API interface. 

• From UE/MPTCP to dRAX: This is the interface to provide UE telemetry and MPTCP telemetry data 
to dRAX. 

• From UE/MPTCP to Data Lake: 3GPP does not support direct collection from UE (see key issue #8 
from [22])– the physical interface between the Data Lake and dRAX can be used to provide UE 
telemetry as well as MPTCP telemetry data to the Data Lake. A logical interface (shown as a green 
dashed line) can be described between the Data Lake and UE.  

• From Infrastructure to Data Lake: This interface is to provide infrastructure telemetry (e.g., VNF 
consumption) to the Data Lake. 

• Interface between Data Lake components: This is the interface inside the Data Lake to dispatch, 
store and/or direct data to appropriate component. 

• From Transport Network to Data Semantic Fabric: This interface provides transport network 
telemetry to the Data Semantic Fabric. 

• From Data Semantic Fabric to Data Lake: This interface retrieves the processed data from the Data 
Lake. 

• From Data Lake to Data Semantic Fabric: This interface injects the processed data to the Data 
Semantic Fabric. 

 Comparison of existing interfaces  

Table 2-7 provides a summary on the existing interfaces and their triggering condition, implementation 
aspects, and pros and cons. 

Table 2-7. Existing Interfaces and Their Properties 

Interface Triggering Condition Pros Cons 

REST 
Data receiver actively 
triggers the data retrieval 
process. 

• Good for short lived processes 
• Simple to implement/use by asking 

for data, getting data if available 
• NA 

KAFKA Data receiver is passive, it 
is triggered by incoming 

• Real-time streaming data 
pipelines. 

• Hardware requirements 
may be too high for 
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data. • Enables applications to react to the 
streams of data named as topic.  

• Many consumer groups can 
subscribe to the same topic.  

• Open-source, free to use. 

lightweight devices. 
• Implementation and 

maintenance complexity. 

AWS 
Kinesis 

The data producer emits 
the data records as they 
are generated and the 
data consumer retrieving 
data stream as it is 
generated. 

• Good for processing big data in 
real-time. 

• Simplifies the development 
process of certain applications 
such as operational decision 
making with streaming data. 

• Writes each message 
synchronously to different 
machines. 

• Easy to implement and maintain. 

• AWS product, pay and 
use. 

• Limitations compared to 
open-source products. 

 

The noted interfaces in the table above are considered in 5G-CLARITY, depending on their triggering 
condition. For example, the northbound interfaces shown in Figure 2.27, there is no need for real-time 
streaming. Therefore, REST interface is considered for the interfaces between i) the data lake and AI engine 
and ii) the data lake and Intent engine. On the other hand, the southbound interfaces shown in Figure 2.27, 
some telemetry data such as dRAX and UE telemetry is needed in real or near-real time, whereas some 
telemetry data can be retrieved in non-real time. Therefore, depending on the telemetry data retrieving 
frequency and implementation consideration, Kafka and AWS kinesis are used for the southbound interfaces. 
In addition, as the AWS cloud-based approach is used for one of the 5G-CLARITY telemetry solutions, the 
capabilities in AWS Kinesis such as data streaming, Kinesis firehouse and data analytics are used within 
components inside the data lake. 

Based on the above rationale, Table 2-8 provides the selected solutions for the interfaces allowing for the 
exchange telemetry data among involved MFs.  

Table 2-8. 5G-CLARITY Interfaces for the Exchange of Telemetry Data. 

5G-CLARITY Interface Interface 
Implementation Triggering Condition 

From/to AI engine 
to/from Intent engine REST ML algorithm residing in the AI engine requires data or 

takes an action. 

From Intent Engine to 
Data Lake REST A specific data set available in the data lake is needed. 

From Data Lake to 
Intent Engine REST There is a request from the Intent Engine/AI Engine. 

From AI Engine to Data 
Lake REST ML algorithm residing in the AI engine requires data. 

From Data Lake to AI 
Engine REST There is a request from the AI Engine. 

From dRAX/Access 
Network to Data Lake KAFKA/AWS Kinesis Continuous access network/UE telemetry data streaming – 

near real-time. 

From UE to dRAX REST Continuous UE telemetry streaming – near real-time. 

From MPTCP to dRAX REST Continuous MPTCP telemetry streaming – near real-time. 

From dRAX to Wi-Fi-LiFi REST 
Using Prometheus HTTP API to retrieve Wi-Fi-LiFi metrics 
stored in the Prometheus server. API available here: 
https://prometheus.io/docs/prometheus/latest/querying/a
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pi/ 

From UE/MPTCP to Data 
Lake Logical Continuous UE telemetry streaming – near real-time. 

From Infrastructure to 
Data Lake REST Continuous infrastructure telemetry streaming – non-real-

time. 

Interface between Data 
Lake components AWS Kinesis New data file/set is available. 

From Transport 
Network to Data 
Semantic Fabric 

gNMI/NiFi Continuous transport network telemetry streaming – non-
real-time. 

From/to Data Semantic 
Fabric to/from Data 

Lake 
KAFKA/AWS Kinesis There is a need for a specific data available in the data lake 

or there is a request from the data semantic fabric. 

 

 Data Semantic Fabric Service Interfaces  

Table 2-9, introduced in D2.2 [2], describes the management services exposed by the data semantics fabric. 
The APIs implementing these services are still in roadmap, so demonstrations and further detail 
implementations will be provided in the upcoming 5G-CLARITY D4.3.  

Table 2-9. Data Semantic Fabric Services 

MF Service ID MF Service Name Description Reference 
Specifications 

DSF_Src_Mgmt Source management 

This service allows manipulating (create, update, 
read, delete) the entries in the source registry. Each 
entry contains the class corresponding to a different 
data source. The start (termination) of a subscription 
- with a data source deployed on the 5G-CLARITY 
system - translates into the insertion (removal) of a 
new (existing) subscription into (from) the source 
registry. 

Custom (REST) 

DFS_Cns_Mgmt Consumer 
management 

This service allows manipulating (create, update, 
read, delete) the entries in the consumer registry. 
Each entry contains the information corresponding to 
a different data consumer. 

Custom (REST) 

DFS_Pipe_Prov Data pipeline 
provisioning 

This service allows issuing individual service requests 
for the creation of data pipelines and retrieving 
information about their state throughout their 
lifecycle. 

Custom (REST) 

DFS_Cap_Ex Capability exposure 

This service allows providing file version system 
capabilities. Examples of these capabilities include in-
built rules for data aggregation. It is worth noting that 
different (more recent) versions may bring different 
(more advanced) set of capabilities. 

Custom (REST) 

 

 Data Lake Service Interfaces  

Table 2-10, introduced in 5G-CLARITY D2.2 [2] describes the management services exposed by the data lake. 

Table 2-10. Data Lake Services 

MF Service ID MF Service Name Description Reference 
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Specifications 
DataLake_Ingress

_Service 
Data Lake Ingress 

Service 
This service allows ingestion of structured and 
unstructured data to data lake. Custom 

DataLake_Exposu
re_Service 

Data Lake Exposure 
Service 

This service exposes data lake storage to 
authenticated users. Custom 

DataLake_DataSe
curity_Service 

Data Lake Data 
Security Service 

This service maintains data access policies of the 
data lake. Custom 

DataLake_Discov
ery_Service Data Discovery Service This service allows data discovery queries to the 

data lake metadata. Custom 

DataLake_Explor
ation_Service 

Data Exploration 
Service 

Data Exploration Service Allows User to gain 
access to specified data in data lake in order to 
explore it. 

Web service 
(e.g. Jupyter 
Notebooks) 

 

In order to clarify the noted data lake services, some AWS data lake related details are provided as follows. 
The entry way to the AWS Cloud is an API Gateway that allows to fetch any telemetry data produced by 
various components shown in Figure 2.27 and redirect them to storage as well as analysis endpoints within 
the AWS cloud. Figure 2.28 shows various paths that can be used by the API to upload and send data to 
different buckets.  

/

/s3

/s3/{bucket}

/s3/{bucket}/{item}
/{bucket}/{item}

GET – Retrieve specific data
PUT – Upload new data

/s3/{bucket}

GET – List all items in S3
PUT – Create a new bucket

/

GET – List all buckets

 
Figure 2.28. S3 end points used by API Gateway 

Regarding the Data Lake Ingress Service, a Lambda function can be used to trigger ingestion of structured or 
unstructured data to the data lake. Another Lambda function can also be used to react on any new 
object/data events on S3 (PUT data to a specific bucket and/or item inside a bucket), meaning that every 
new object stored in the bucket will trigger the Lambda function, as depicted in Figure 2.23. The same 
approach can also be used for Data Lake Exposure Service and Data Lake Discovery Service where one 
Lambda function exposes the s3 buckets and/or items list (GET to list all buckets or all items in the bucket), 
and another Lambda function discovers and retrieves a specific data (GET inside an item to retrieve the 
specific data). 

 Near RT-RIC telemetry 

In the 5G-CLARITY architecture the near RT RIC plays a pivotal role in integrating different telemetry streams 
towards the data-lake, so that data becomes available to the machine learning models hosted in the AI 
Engine. 

The basic technology supporting this data integration is the xApp framework available in the dRAX near RT 
RIC developed by ACC in 5G-CLARITY. The xApp framework allows us to develop customized python-based 
applications that will fetch data from different sources, to then publish the aggregate data-stream into a 
kafka-based data bus available inside dRAX. Thus, a generic telemetry collector xApp will subscribe to the 
available topics in the kafka bus and push them towards the data-lake. 
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Figure 2.29 illustrates the xApps that will be developed in 5G-CLARITY in charge of pulling telemetry from 
different data sources into the dRAX’s kafka-bus. As we can see the following xApps have been identified: 

• Wi-Fi+LiFi xApp. This xAPP will be in charge of pulling telemetry from the Wi-Fi and LiFi APs and 
publishing this telemetry into the dRAX data bus. An initial version of this xApp has been developed 
in this deliverable and is reported later in this section. 

• UE telemetry xApp. This xApp will be in charge of pulling metrics captured from the UE perspective 
and publishing the metrics into the dRAX databus. The UE telemetry xApp will make use of a UE 
telemetry agent that is described in Section 2.2.2.4.2. 

• MPTCP xApp. This xApp will pull end-to-end metrics obtained from the AT3S user plane function, i.e. 
the MPTCP socket. There are two endpoints that offer this telemetry, namely the MPTCP socket in 
the 5G-CLARITY CPE and the MPTCP socket in the MPTCP proxy sitting behind the UPF in the 5G-
CLARITY edge cluster. In Section 2.2.2.4.3 we describe the data that will be made available to the 
MPTCP xApp. 

• Data-Lake xApp. This xApp will be in charge of subscribing to the relevant topics in the kafka bus and 
exporting the telemetry towards the Data Lake, from where the data will be made available to the 
models in the AI Engine. 

 
Figure 2.29. Telemetry xAPPs executed in dRAX 

2.2.2.4.1 Wi-Fi + LiFi xApp 

Next, we discuss in detail the implementation of “Wi-Fi+LiFi” xApp that is illustrated in Figure 2.30. The “Wi-
Fi+LiFi” xApp can collect telemetry from various physical Wi-Fi and LiFi APs. In addition, following the 5G-
CLARITY slicing model we know that each physical Wi-Fi and LiFi AP can instantiate multiple virtual Aps, each 
with a defined SSID and connected to a separate transport VLAN. In Figure 2.30 we see physical APs identified 
with a “boxname”, e.g. s1, and we represent with a pink and light green circle two virtual APs connected to 
their respective VLANs. Physical APs are then connected via Ethernet to the RAN cluster, where the near RT 
RIC (dRAX) and a Prometheus server are deployed. The flow of data in this architecture is the following: 

• The Prometheus server in the RAN cluster periodically pulls the various counters from the Wi-Fi and 
LiFi nodes through their respective hostapd exporters. For Wi-Fi nodes the following hostapd 
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exporter developed by I2CAT is used [23].  For the case of LiFi a custom exporter developed by PLF 
is used. 

• The Wi-Fi+LiFi xApp uses a standard Prometheus API to periodically pull data from the Prometheus 
server and publishes the retrieved data into the dRAX databus, where data becomes available to any 
other xApp. 

 
Figure 2.30. Wi-Fi+LiFi telemetry xApp 

Figure 2.30 also describes the structure of the topics published by the Wi-Fi+LiFi xApp in the databus, 
focusing on the case of Wi-Fi. The integration of the LiFi exporters was still under development at the time 
of writing this deliverable. The following fields are available: 

• Topic name and value (marked in red): Defines the type of metric being published and the respective 
value. The available metrics are described in Table 2-11. 

• Topic type (marked in yellow): “WI-FI_AP_STATS”, if this is a topic that refers to an AP level metric, 
and “WI-FI_STA_STATS”, if the topic refers to a station specific counter. 

• Timestamp (marked blue): Defines the moment the metric was pulled from the AP by the 
Prometheus server. 

• Service VLAN (SVlan – marked pink): Defines the transport VLAN that this AP or station is connected 
to. This field can be used as a slice identifier within the 5G-CLARITY architecture. Thus, an ML model 
in the AI Engine could subscribe to all metrics for a given slice using this field. 

• AP Identifier (id – marked purple): Identifies the physical AP (e.g., s1) and the radio module within 
that AP (e.g. “phy1”). This field can be used to aggregate counters on a per-AP basis. 

Finally, Figure 2.31 provides a snapshot of the dRAX bus where one can find both Wi-Fi related telemetry 
topics (marked in green) and 4G related telemetry topics (marked in orange). 
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Table 2-11. Wi-Fi Related Topics Available in dRAX 

Topic Name Type 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_tx_rate_bps WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_backlog_bytes_total WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_connected_time_total WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_rx_bytes_total WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_rx_rate_bps WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_signal_dBm WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_total_airtime WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_sta_tx_bytes_total WI-FI_STA_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_ap_freq_Hz WI-FI_AP_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_ap_max_txpower_dBm WI-FI_AP_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_ap_num_stations WI-FI_AP_STATS 

I2cat.i2cat_team.Wi-Fi.external.raw.hostapd_ap_channel WI-FI_AP_STATS 

 

 
Figure 2.31. Sample of 4G (orange) and Wi-Fi (green) telemetry topics available on the dRAX kafka bus 

2.2.2.4.2 UE Telemetry xApp  

The overall UE telemetric sub system is described in Figure 2.32, wherein an application running in the UE 
sends through REST-API in JSON format the measurements of set of radio parameters to the near RT RIC by 
the “UE telemetry” xApp, as illustrated in Figure 2.29. The collected UE telemetry then can be sent to a data 
lake hosted in a close-range edge computing (i.e., 5G-CLARITY Edge cluster and AI engine) or in a far cloud 
computing environment.  
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Figure 2.32. UE telemetry sub-system 

 

Table 2-12. Main Measurements Obtained by the UE Telemetric Approach (in JSON format) 

WAT/RAT Source REST API ID Description 

5G (SA and 
NSA) / LTE UE/CPE UE_Cellular_KPIs 

Cellular parameters retrieved from UE radio such as Received 
Strength Reference Power (RSRP), Received Signal Signal to 
Noise Ratio (RSSNR), CellID, etc. 

Wi-Fi UE/CPE UE_Wi-Fi_KPIs 
Wi-Fi parameters such as Received Signal Strenght Indicator 
(RSSI), Channel, Link spped, Basic Service Set Identifier (BSSID), 
etc. 

LiFi UE/CPE UE_LiFi_KPIs LiFI parameters such as RSSI, Link speed, SSID, etc. 

GNNS UE/CPE UE_GPS_coordinate UE/CPE geographical location 
 

The following figures represent the output of the measurement from UE telemetry application in JSON 
format for different wireless access technologies as described in Table 2-12. These are the measured 
parameters send to data lake for processing in the AI Engine. Each measurement has a timestamp that 
indicates the accurate time of measurement and the device's unique id. The “measurement_id” parameter 
will be used to make each measurement unique.    

Figure 2.33 represents the measured parameters when the UE camped on an LTE cell; this includes the MNO 
information and Serving Cell (SC) information.   

Figure 2.34 and Figure 2.35 represent the measured parameters for the 5G network in both stand-alone and 
non-stand-alone modes. When the UE register with 5G-NSA (EN-DC), both Master Cell (MC), which is an LTE 
cell and New Radio (NR) cell information captures. 
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Figure 2.33. Sample JSON output for LTE measurements 

 
Figure 2.34. Sample JSON output for 5GNR Stand-Alone mode measurements 

 
Figure 2.35. Sample JSON output for 5GNR Non Stand-Alone mode measurements 
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Figure 2.36. Sample JSON output for WI-FI measurements 

 
Figure 2.37. Sample JSON output for GPS location  

If the UE attach to a Wi-Fi network, the following parameters will be captured as illustrated in Figure 2.36.  

In most cases, the UE telemetry application requires access to the telephony manager of the UE to retrieve 
Radio parameters, nevertheless according to the GDPR, retrieving information related to the SIM card, 
including SIM number, IMSI, or other unique identifiers are not possible in commercial UEs like smartphones 
in recent days. So, the “Device_Id” parameter is a unique random identifier for the UE that does not include 
any personal information.  

The UE telemetric system currently is under testing and redevelopment to support a broader measurement 
required by 5G-CLARITY use cases. The near RT RIC dRAX connection through “UE telemetry” xApp will be 
implemented in 5G-CLARITY D4.3. 

2.2.2.4.3 End to end MPTCP xApp   

The end-to-end metrics are obtained from the AT3S user plane function, namely the MPTCP socket. More 
specifically, the MPTCP socket in the 5G-CLARITY CPE and the MPTCP socket in the MPTCP proxy sitting 
behind the UPF in the 5G-CLARITY edge cluster provide the end-to-end MPTCP metrics. The telemetry data 
from these two endpoints will be made available to the “MPTCP” xApp residing in the near RT RIC, as 
illustrated in Figure 2.29. 

The MPTCP module includes two APIs to configure and manage the MPTCP schedulers available. One of the 
APIs is composed of a set of Python functions which are executed locally. The other allows access to this 
functionality remotely. 

Part of this API is devoted to gather metrics of the subflows owned by the MPTCP sockets. Each subflow is a 
TCP connection which uses the same linux kernel data structure than regular TCP connections. This 
information can be exposed by different means to a monitoring process. 

There exist several ways to access the TCP and MPTCP related metrics locally. The set of parameters that can 
be accessed depends on the procedure and source used. The procedures identified to gather MPTCP 
telemetry data are the following: 

• By modifying the MPTCP schedulers at kernel level. The schedulers implementation has access to 
the internal data structures which subflows use. Those parameters can be exposed as 
/proc/net/mptcp/<metric> files. The simplest way of including data in the <metric> file is to define 
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a structure with the proper kernel data type (for instance, as an array of integers). 
This data, such as the socket structure of each subflow, can be read and write from the schedulers 
code, each time they send a segment. However, although this method allows to expose any 
customised data, it requires changing every scheduler source code. 

• By customising the /proc/net/tcp and /proc/net/mptcp files [24]. The kernel exposes some 
parameters of the active TCP flows (and therefore, MPTCP subflows) in the /proc/net/tcp special file. 
This file is generated at file ipv4_tcp.c of the linux kernel, and shows the inode to which the socket 
is bound, and parameters such as the congestion window and the retransmission timeout value. 
Additionally, file /proc/net/mptcp lists the active MPTCP sockets, indicating the inode to which are 
bound. Each subflow has the same inode that the MPTCP socket which created them. Although this 
is an easy method to get up to date metrics, it only provides two metrics. This drawback can be 
overcome by modifying the kernel source code to include additional information from the subflow 
socket structure. This may lead to unexpected parsing errors of legacy network monitoring 
applications, if they use these files. 

• By using the "ss” tool of the IPRoute2 [25]. The “ss” tool can provide extended information of TCP 
sockets, including their inode, congestion window, segments sent, estimated egress throughput, 
estimated mean round trip time, its deviation, and other socket level information. This tool also 
exposes information about the configuration of the socket, such as the congestion control algorithm 
or the explicit congestion notification option status. The "ss” tool accesses to this kernel information 
by using netlink sock_diag messages [26], which is a more suitable way of communication between 
the kernel and user space processes. The only issue of using this method is that it adds overhead to 
the monitoring process, and may not be called at high rates. 

The method selected to gather the MPTCP metrics is based on integrating with the Python API a customised 
"ss” version. This way, there is no need to change the expected format of /proc/net files, gathering rich 
information at the same time. 

The Python API correlates /proc/net/mptcp sockets list with the per flow information offered by the "ss” 
tool.  

As an example of use of the API, is shown in Figure 2.38. This API uses a JSON based representation of the 
telemetry data, so it is easier to integrate this into a REST based server. An example of output telemetry 
obtained from a scenario with a MPTCP socket using two interfaces, can be shown in Figure 2.39.  

The near RT RIC dRAX connection through “MPTCP” xApp will be implemented in 5G-CLARITY D4.3. 
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Figure 2.38. Example of use of the local MPTCP metrics Python API 

 

 
Figure 2.39. Example of metrics of two subflows pertaining to a MPTCP socket (inode=282035). 
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2.2.2.4.4 Data Lake xApp 

As the access network telemetry or UE telemetry data will be continuously streamed with a specific 
frequency, the process of detecting new telemetry data and triggering data upload to the data lake should 
be supported. Such a process may be implemented by some file system monitoring APIs such as Watchdog 
Python API that observes changes in a directory and conducts any given process. When a new telemetry data 
file is added to a specific directory that is being monitored, a function that obtains the name of the recently 
added file may be used to trigger another function to upload the telemetry data to the relevant s3 
buckets/items in the data lake. 

class Handler ( FileSystemEventHandler ):
         @staticmethod
         def on_any_event ( event ):
                  if event . is_directory :
                         return None
                  elif event . event_type == 'created ':

 print (" Received created event - %s.")
 time . sleep (5)
 fileAdded ()

                  elif event . event_type == 'modified ':
 print (" Received modified event - %s.")

def getLatestFileName ():
         list_of_files = glob . glob ('C:/ Users /.../*. db ')
         latest_file = max ( list_of_files , key=os. path . getctime )
         return latest_file

 
Figure 2.40. Example scripts for Watchdog file system event handling and file name obtaining. 

 

The near-RT RIC dRAX connection to data lake through “Data Lake” xApp will be implemented in the next 
deliverable D4.3. 
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3 5G-CLARITY ML Algorithms  
In this section an initial implementation of the ML algorithms proposed in 5G-CLARITY D4.1 [1] are described. 
The 5G-CLARITY leverages different ML algorithms to support automatic network management, as well as to 
support different network functionalities. The initial implementation of the following algorithms is presented 
in this section:  

• Predicting SLA violations/success rate (Section 3.1). The proposed algorithm uses echo state 
networks (ESNs) to forecast real-time traffic value, which will be occurring in the next time step. 
Since the network traffic shows a chaotic time-series properties, ESNs with very sparse connection 
among the reservoir neurons are shown to be very effective in predicting the future values. After 
the initial input normalization, the internal parameter optimization for our ESN framework is 
presented. Lastly, the time series forecasted values used to detect a potential SLA violation in the 
next time step.  

• RT RIC: AT3S traffic routing/handover (Section 3.2). This focuses on developing the model-based 
part of the hybrid model that we proposed in the previous deliverable. The model-based part process 
input data that are available from indoors, e.g., Wi-Fi and LiFi RSSIs as well as image data from Closed 
Circuit Television (CCTVs). The output of the model is a prediction of a metric that is a function of 
locations of UEs at the next time step. We apply an ensemble deep learning architecture consisting 
of Convolutional Neural Networks (CNNs) and fully connected neural networks and investigate the 
reliability of the model-based part. 

• RAN slicing in multi-tenant networks (Section 3.3). The proposed algorithm focuses on how to 
distribute the available capacity in a multi-cell NG-RAN infrastructure among different slices where 
each slice provides service to a different tenant. The algorithm targets to fulfil the SLA requirements 
of each tenant and to achieve an efficient utilisation of the radio resources.   

• Optimal Access Networks (Section 3.4). This focuses on the optimal multi-WAT access network 
problem by describing the initial modelling and designing of an AI based architecture. The proposed 
approach will predict access network states to recommend a set of optimal multi-WAT access 
network policy that maximize the QoS and mobility. Section 3.4 introduces the problem statement 
and formulation as linear programming, the initial design of our model followed by some initial 
results and evaluations.  

• Indoor ranging with LoS awareness (Section 3.6). The indoor NLoS-aware ranging is an algorithm 
relying mainly on the Deep Neural Network (DNN) approach as well as the channel impulse 
responses collected in an office environment. In particular, it first detects the link condition, i.e. LoS 
or NLoS, and then depending on that employs a specific DNN model to estimate the distance of the 
user.    

• Resource provisioning in a multi-technology RAN (Section 3.7). This algorithm attempts to solve the 
radio resource provisioning problem in an industrial network scenario with a multi-technology RAN 
in which URLLC and eMBB services are supported. Unlike the algorithm proposed in Section 3.3, 
where the network is shared among different tenants, in this use case an industrial network is 
considered as a standalone NPN managed by a unique private operator. 

• Transport network setup (Section 3.8). This algorithm finds a satisfiable configuration for an 
asynchronous TSN transport network to accommodate the traffic of the different 5G-CLARITY slices 
while ensuring its end-to-end delay and jitter budgets for all of them. 

• Adaptive AI-based defect-detection in a smart factory (Section 3.9). This algorithm aims to have a 
zero-defect manufacturing system. It focuses on a production line in a smart factory where defective 
pieces on the production line have been detected by an AI-based defect-detection algorithm. Once 
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Table 3-1. ML Use Case Execution Times and Deployment Location. 

Use Case ML Model 
Type 

Planned Execution 
Time 

Ideal Location of 
Deployment 

Predicting SLA violations/success rate ESN 1-200 ms PCF/UPF 
RT RIC: AT3S traffic routing/handover RL 100 ms UPF 
RAN slicing in multi-tenant networks RL Minutes MANO layer 

Optimal network access problem RL 20-300 ms UE 

Indoor ranging with nLOS awareness SVN, DNN 200-500 ms Localization server / Edge 
cluster 

Resource provisioning in a multi-
technology RAN RL Minutes Non-RT RIC 

Transport network setup RL Minutes/days Slice Manager, NFVO, VIM, 
SDN Controller 

Adaptive AI-based defect-detection in a 
smart factory 

DNN (YOLO 
v3) Seconds Edge cluster 

 
a defective item is detected, an automatic intervention in order to stop the line and take the 
defective pieces out of the line is triggered. 

• The details of all of the initial implementation of these ML algorithms, as well as the initial evaluation 
is given in the corresponding subsections. In  

Table 3-1, a summary of the ML model type, execution, time as well as, ideal location of deployment is 
summarized. The use cases employ state of the art ML algorithms, including Echo State Networks (ESN), 
Reinforcement Learning (RL), Support Vector Machine (SVM) and Deep Neural Networks (DNN). 

3.1 Predicting SLA violations/success rate  
The service-oriented architecture (SOA) provides modularity and granularity to the 5GNR network 
framework, where the control plane functionalities and data repositories at the core network are comprised 
of a set of interconnected network functions (NF). One of the key features of 5GNR is the guaranteed high-
level quality of service (QoS) for diverse user requirements by using the same conflicting infrastructure. This 
challenge has been overcome by the concept of network slicing, which suggests the partitioning of legacy 
network resources into virtual units to enhance the overall system efficiency and flexibility. Often, the QoS 
levels could be translated into service level agreements (SLAs), which specify the agreements between 
customers and service providers. In other words, an SLA emphasizes the responsibilities of each party along 
with the underlining performance standards. It is important to note that the legal consequences e.g., 
penalties for any breaches could have a detrimental effect on the mobile virtual network operators (MVNOs). 
On the contrary, there might be bonuses for exceeding the agreed level of service performance.  

The SLA lifecycle is an important part of the provision of 5GNR related services. The broad adoption of the 
software defined network (SDN) in 5G has also affected the evolution of the SLA lifecycle. In Figure 3.1 the 
phases of an SLA’s lifecycle are depicted in the context of an SLA management framework. As can be seen 
from the figure, dynamic SLA management consists of four phases: (i) SLA template generation, (ii) slice 
instantiation, (iii) agreement creation and (iv) SLA monitoring. In the first phase, selection of four key 
components is required for successful SLA template generation: (i) network services, (ii) SLA name, (iii) valid 
future expiration date and (iv) at least one service level objective (SLO). The SLA template, in the form of a 
descriptor, is generated and the parameters are defined by commercial officer on behalf of the network 
operator, where the descriptor is stored in a database. In the next phase, a negotiation between the 
customer and commercial officer takes place. Accordingly, a NS is requested by the customer from the 
commercial officer and the available network services are presented along with the SLA templates.  
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Figure 3.1. SLA Lifecycle and management framework in 5GNR networks.  

Then, a network service instantiation within a specific network slice occurs in the MVNOs infrastructure. In 
phase three, the official association between the SLA and the instantiated slice takes place. Lastly, in phase 
four, monitoring of the SLA is initiated. Moreover, the monitoring rules such as assessment on settlement, 
termination commitments, customer care and data related processes are also taken care of by the 
monitoring manager. Once a violation of the SLA is determined by the monitoring manager; a violation alert 
is generated and stored in the database. Furthermore, the termination of the entitlement between MVNOs 
and the network service customer, which includes the legal basis are also taken care of within this phase. 

 Methodology 

To satisfy the customer demand as well as ensuring sufficient system performance, estimation and/or 
prediction of the required resources is of vital importance. As the whole operation dynamics of the 5GNR 
network could be thought of as a living organism, both the detection and reaction to potential SLA violations 
must be prompt. Moreover, the estimation of the upcoming potential traffic along with the possible 
violations will help MVNOs to generate a significant financial benefit. Consequently, echo state networks 
(ESNs) are adopted in this work to predict the SLA violations that might possibly happen in the lifecycle of 
SLAs. The reason behind the selection of ESNs for this task is two-folds. Firstly, highly unpredictable, and 
potentially non-linear input output relationships inside the 5GNR functional blocks, which yields a 
mathematically intractable complex network structure. Since the development of an accurate mathematical 
model for a system of this scale is not an easy task, the data-driven structure of ESNs, as opposed to model-
driven ones, play a significant role in black-box optimization for the given application. Secondly, the sparse 
interconnection requirement among neurons in ESN, which practically yields significantly reduced 
computational overheads compared to other conventional systems. For instance, artificial neural networks 
(ANNs) with multiple and large number (known as deep learning) of hidden layers.  

In Figure 3.2, the adopted ESN structure to detect/estimate SLA violation/success is depicted. Similar to 
conventional ANN structures, ESN consist of three layers: input, intermediate and output, which consist of 
𝐾𝐾, 𝑁𝑁𝑥𝑥 and 𝐿𝐿 neurons, respectively. 

  

 
Figure 3.2. The echo state network structure considered for SLA violation/success rate predictions. The solid and 

dashed lines with arrows indicate the fixed and trainable connections, respectively.  
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In the first layer, the input vector whose activation in time step 𝑛𝑛 = 1,2,⋯ ,𝑇𝑇  is denoted by 𝒖𝒖(𝑛𝑛) =
[𝑢𝑢1(𝑛𝑛) 𝑢𝑢2(𝑛𝑛)⋯ 𝑢𝑢𝐾𝐾(𝑛𝑛)]T is fed to the network. The parameter 𝑇𝑇 denotes the number of data points in 
the training dataset. Here, the inputs will be both low- and high-level descriptions/requirements, and the 
policies. The low-level descriptors are the infrastructure related parameters, whereas the high level involves 
virtual network functions (VNFs) and NS network load and slice traffic parameters. In the intermediate stage, 
𝑁𝑁𝑥𝑥 hidden or in other words, reservoir activation vector 𝒙𝒙(𝑛𝑛) = [𝑥𝑥1(𝑛𝑛) 𝑥𝑥2(𝑛𝑛)⋯ 𝑥𝑥𝑁𝑁𝑥𝑥(𝑛𝑛)]T is employed. 
It is important to note that the biggest advantage of ESNs come from this stage, where unlike fully connected 
ANNs, a sparsely/loosely connected neural network is employed in the reservoir. It should also be noted that 
the internal connecting weights in the reservoir are initialised randomly, where the asymptotic state 
convergence occurs as time passes after the effect of initial conditions have vanished. For a large ESN 
network, it could take a few hundred steps to get rid of the initialisation contamination. Lastly, at the output 
stage 𝐿𝐿  readout neurons 𝒚𝒚(𝑛𝑛) = [𝑦𝑦1(𝑛𝑛) 𝑦𝑦2(𝑛𝑛)⋯ 𝑦𝑦𝐿𝐿(𝑛𝑛)]T are employed. The 𝑁𝑁𝑥𝑥 × 𝐾𝐾  connection 
weights matrix between the input and reservoir neurons, which is denoted by 𝑾𝑾in, is also depicted in Figure 
3.2 .Similarly, the 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑥𝑥  reservoir weights matrix is given by 𝑾𝑾. Finally, the 𝐿𝐿 × (𝐾𝐾 + 𝑁𝑁𝑥𝑥) connection 
weights matrix between the input and reservoir neurons to output neurons is given by 𝑾𝑾out. The main goal 
of the ESN is to learn a model, 𝒚𝒚target(𝑛𝑛) ∈ ℝ𝐿𝐿, where the predicted output, 𝒚𝒚(𝑛𝑛), matches the target output 
as accurately as possible by minimizing the error, 𝐸𝐸(𝒚𝒚,𝒚𝒚target). Please note that our expectation from the 
ESN is to gain the ability to generalize the model and predict and accurate results even for completely new 
data. Typically, root-mean-squared-error (RMSE) is used as the error expression, 𝐸𝐸(𝒚𝒚,𝒚𝒚target),  

𝐸𝐸(𝒚𝒚,𝒚𝒚target) =
1
𝐿𝐿
��

1
𝑇𝑇
� �𝑦𝑦𝑖𝑖(𝑛𝑛) − 𝑦𝑦𝑖𝑖

target(𝑛𝑛)�
2

𝑇𝑇

𝑛𝑛=1

𝐿𝐿

𝑖𝑖=1

 

where the above expression is also averaged over 𝐿𝐿 dimensions of the output signal. Moreover, the typical 
update equations for ESN could be given as follows: 

𝒙𝒙(𝑛𝑛) = (1 − 𝛼𝛼)𝒙𝒙(𝑛𝑛 − 1) + 𝛼𝛼𝒙𝒙�(𝑛𝑛) 

where 𝒙𝒙�(𝑛𝑛) ∈ ℝ𝑁𝑁𝑥𝑥  represents the reservoir activation update vector at a time step 𝑛𝑛. Furthermore, the 
parameter 𝛼𝛼 ∈ (0,1] is the leaking rate that determines the speed of the reservoir update dynamics. To 
obtain 𝒙𝒙�(𝑛𝑛), the element-wise activation function of tanh(∙) could be applied by 

𝒙𝒙�(𝑛𝑛) = tanh �𝑾𝑾in[1;𝒖𝒖(𝑛𝑛)] + 𝑾𝑾𝑾𝑾(𝑛𝑛 − 1)� 

where the operation [∙ ; ∙] denotes the vertical vector/matrix concatenation. Note that the tanh(∙) is the 
most popular activation function used in the literature, however, other sigmoid activation functions could 
also be used. After the ESN reservoir activation update, the output vector can be expressed by 𝒚𝒚(𝒏𝒏) =
𝑾𝑾out𝑿𝑿, where 𝑿𝑿 = [𝟏𝟏;𝒖𝒖(𝑛𝑛);𝒙𝒙(𝑛𝑛)]. The optimal output weights can also be obtained as follows: 

𝑾𝑾out = 𝒚𝒚target𝑿𝑿T�𝑿𝑿𝑿𝑿T + 𝛽𝛽𝑰𝑰�−𝟏𝟏 

where the parameter 𝛽𝛽 is a regularization coefficient that is utilized to mitigate the over-fitting as well as to 
maintain the feed-back stability. The matrix 𝑰𝑰 denotes the (𝐾𝐾 + 𝑁𝑁𝑥𝑥 + 1) × (𝐾𝐾 + 𝑁𝑁𝑥𝑥 + 1) identity matrix. An 
additional non-linearity can be applied to 𝒚𝒚(𝑛𝑛) by using feedback connections 𝑾𝑾feedback ∈ ℝ𝑁𝑁𝑥𝑥×𝐿𝐿 as follows: 

𝒙𝒙�feedback(𝑛𝑛) = tanh �𝑾𝑾in[1;𝒖𝒖(𝑛𝑛)] + 𝑾𝑾𝑾𝑾(𝑛𝑛 − 1) + 𝑾𝑾feedback𝒚𝒚(𝑛𝑛 − 1)� 

 ESN based time series forecasting 

In this subsection, the details of the dataset that will be used in the ESN based time series prediction and SLA 
violation detection will be explained.  
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Figure 3.3. The architecture of the ESN based SLA violation detection system. 

The block diagram of the utilized architecture for time series forecasting and SLA violation detection is given 
in Figure 3.3. As depicted in the figure, the potential SLA violation decision is made by using the ESN based 
time series forecasting results. The main reason behind this is the flexibility and adaptability requirements 
of the current 5G networks. Accordingly, the AI/ML aided SLA anomaly detection would require repetition 
of both the training and validation phases with the change in the SLA descriptor and template of MVNOs 
every single time. Therefore, our approach decouples the prediction phase and SLA descriptors, where only 
the customer key performance indicators (KPIs) are predicted with the aid of ML.  

The dataset dimension/feature extraction is the first step to obtain the “reduced dataset”. In this work, 5G 
radio access network (RAN) traffic statistics dataset generated by COSMOTE [30] are used as our input data. 
In the adopted dataset, the measurement-based data is collected for both the UMTS and LTE setup with 15 
and 11 base stations (BSs) / micro-BSs, respectively. Since the main goal is to predict potential SLA violations 
in a given slice to avoid penalties that could affect the infrastructure owner/operator, we utilized the LTE 
measurement dataset without loss of generality. 

In the LTE dataset, there are 26 parameters, where both the parameters and their descriptions are provided 
by the files given in [30]. For the sake of simplicity of our analysis, two of these parameters are employed: 

(i) Time stamp, which gives the absolute time of the measurement sample, and 
(ii) Downlink data traffic, which measures the downlink (DL) data traffic, in Mbps, for 15 minutes of 

intervals, 

In Figure 3.4, the aggregated DL data traffic in GBytes, which is obtained by the combination of the 9 
BS/micro-BS measurements, is depicted. Please note that the reason behind this is the various sizes of the 
measurement data that are available for each BSs. Thus, to capture the maximum number of BS 
measurements as well as the time samples, the BSs (BS1, BS4, BS5, BS6, BS7, BS8, BS9, BS10_reconf and 
BS12), which yield at least 4211 time-samples are chosen. Then, the aggregated DL traffic input, which will 
be used as our stationary time series at the input stage of ESN is obtained.  

 Input pre-processing 

It is important to note from Figure 3.4(a) that the DL aggregated data traffic samples follow an approximate 
Gaussian distribution with the mean and variance values of 1.49 and 0.58, respectively. Since the input data 
normalization plays an important role for a faster and more accurate convergence of the gradient descent 
algorithm, the input data has been normalized as depicted in Figure 3.4(b).  

It is important to note that there are two major ways of data normalization: 

• Linear range transformation of the data within the interval [𝑙𝑙 𝑢𝑢], where the minimum and maximum 
values of the dataset are mapped into the values 𝑙𝑙 and 𝑢𝑢, respectively, as follows: 

𝒅𝒅normalized =
𝒅𝒅 − 𝒅𝒅min

𝒅𝒅max − 𝒅𝒅min
× (𝑢𝑢 − 𝑙𝑙) + 𝑙𝑙 
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(a) 

 

(b) 

Figure 3.4. The aggregated data traffic data in; (a) raw and (b) statistically normalized and smoothed format. 

 

where the (4211 × 1)  measurement vector is represented by 𝒅𝒅 = [𝑑𝑑0 𝑑𝑑1 ⋯ 𝑑𝑑𝐿𝐿t+𝐿𝐿v−1] . The 
parameters 𝐿𝐿t and 𝐿𝐿v denote the length of the training and validation sets, respectively. Moreover, the 
minimum and maximum values of the dataset could be found by 𝒅𝒅min = min{𝒅𝒅} and 𝒅𝒅max = max{𝒅𝒅}, 
respectively. 

• Another important input normalization is the statistical normalization to obtain the mean and standard 
deviation values of zero and one, respectively, which could be represented by, 

𝒅𝒅normalized =
𝒅𝒅 − 𝜇𝜇
𝜎𝜎

 

where the mean and the standard deviation of the adopted dataset vector are denoted by  𝜇𝜇 and 𝜎𝜎, 
respectively. In our simulations, the input normalization method (ii) is adopted since it yields a better 
normalized root-mean-squared-error performance (NRMSE) performance. Moreover, the data 
denoising is another key data pre-processing procedure that plays a significant role in the system 
performance. As can be seen from Figure 3.4(a), the aggregated DL traffic data contains instantaneous 
fluctuations, which could confuse our ML model and yield a performance degradation for the 
predictions. To overcome this problem, a rolling window based denoising filter is employed, where the 
data after denoising with the window size of 𝑤𝑤 = 4 is depicted in Figure 3.4(b). 

 Predicting the DL aggregated traffic values 

Forecasting the DL aggregated traffic value is of vital importance for the SLA violation detection, where we 
can flag and take an action accordingly even before an anomaly in traffic causes a violation. To execute our 
time series prediction simulations, we have created a framework in Python 3.9.4.  
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(a) 

 

(b) 

Figure 3.5. ESN based time series forecasting methodology; (a) step-by-step, (b) data and resultant prediction 
vector frames. 

We have also used an ESN package obtained from the open source pyESN library [31] to utilize our reservoir 
computing (RC) based solution. Specifically, we aim to forecast 𝑓𝑓 time samples ahead by using the 𝐿𝐿t × 1 
training vector. After 𝑘𝑘 steps, we will compare the obtained forecast vector with the 𝐿𝐿v × 1 validation vector, 
where 𝐿𝐿v = 𝑘𝑘𝑘𝑘. The step-by-step forecasting procedure is given in Figure 3.5. 

After the forecasting procedure, the 𝐿𝐿v × 1 prediction vector 𝒑𝒑 = [𝑝𝑝𝐿𝐿t 𝑝𝑝𝐿𝐿t+1
⋯ 𝑝𝑝𝐿𝐿t+𝐿𝐿v−1]  is compared 

with the validation vector, 𝒗𝒗 = �𝑑𝑑𝐿𝐿t 𝑑𝑑𝐿𝐿t+1 ⋯ 𝑑𝑑𝐿𝐿t+𝐿𝐿v−1�, to obtain a RMSE performance as follows: 

RMSE = �E{(𝒑𝒑 − 𝒗𝒗)2} = �E{(𝒆𝒆)2} = � 1
𝐿𝐿v
�𝑒𝑒𝑖𝑖2
𝐿𝐿v

𝑖𝑖=1

 

The length of the training (𝐿𝐿t) and validation (𝐿𝐿v) as well as the ESN specific parameters, which play a 
significant role in RMSE performance of time series forecasting, are given as follows: 

• 𝑛𝑛input : Number of inputs / input dimensions 

• 𝑛𝑛output : Number of outputs / output dimensions 

• 𝑁𝑁x : Number of neurons in the reservoir 

• 𝑟𝑟 : Random seed for the pseudo-random number generator 

• 𝑠𝑠 : Sparsity of the reservoir neuron connections. In other words, the proportion of the recurrent 
weights which are set to zero 

• 𝜌𝜌 : Spectral radius of the recurrent weights’ matrix 

• 𝜆𝜆 : Noise magnitude, which is added to each neuron for the regularization 

 In Table 3-2, the simulation parameters. which are adopted in our ESN based time series forecasting and 
SLA violation detection simulations are summarized.  
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Table 3-2. Adopted Generic Simulation Parameters for our ESN Simulations. 

Parameter Value(s) 

𝒏𝒏input 1 

𝒏𝒏output 1 

𝑵𝑵x 300 

𝑺𝑺 0.3 

𝝆𝝆 1.2 

𝝀𝝀 0.0005 

𝑳𝑳t 3788 (≈ 𝟗𝟗𝟗𝟗%) 

𝑳𝑳v 420 (≈ 𝟏𝟏𝟏𝟏%) 

𝒇𝒇 1 

𝒌𝒌 𝑳𝑳v 

𝒘𝒘 4 
 
It is important to note from the above table that the prediction step length, 𝑓𝑓, is taken to only predict the 
next step, which corresponds to the next 15 minutes of the DL data traffic. The main reason behind this is 
due to the knowledge that after successful training the model will be capable of predicting future values with 
high accuracy. However, as 𝑓𝑓 increases, the prediction accuracy drops as the ESN is not using the fresh data 
to estimate the trend of the curve. Furthermore, the one time-step forecast uses all the historic data for the 
prediction, which naturally means a better accuracy for the given system. Therefore, the 𝑓𝑓 = 1  case is 
investigated in this work. The scenarios with wider prediction steps and its effect on the system performance 
will be addressed in work as part of a future deliverable. 

 ESN-based time series forecasting performance 

In this subsection, we will investigate the relationship between the values of the parameters 𝑁𝑁x ,  
𝑆𝑆, 𝝆𝝆, 𝜆𝜆 and the RMSE performance of the ESN based predictions, which are also depicted in Figure 3.6.  

In Figure 3.6(a), the RMSE performance of ESN is depicted with respect to the reservoir size (𝑁𝑁x). Accordingly, 
𝑁𝑁x is chosen to be [1 10 50 100 500 1000 2000]. Practically, reservoir sizes of 20, 50, 100, 1000, 
and even 10 000 are covered by research outlined in the literature. As a rule of thumb formula, the value of 
the reservoir size could be determined by using 𝐿𝐿t as follows [32]: 

𝑁𝑁𝑥𝑥 ≤
𝐿𝐿t

2
 

From the figure, the RMSE performance of the ESN network increases with the increase in the reservoir size, 
which is also the case reported by many research items in the literature. The minimum RMSE value is 
achieved when 𝑁𝑁x = 2000 in our simulations. However, note that the performance gain obtained with the 
increase in reservoir size could only be achieved as long as the appropriate measures for stability and over-
fitting are taken into consideration. The term over-fitting explains situations where the ML model fails to 
generalize the details and noise in the training dataset. Furthermore, the computational complexity in the 
training phase of the ESN compared with RNNs is significantly low, which yields up to the applications with 
the reservoir size of 𝑁𝑁x = 104  without increasing the required computational expenses significantly.  
However, the marginal performance gain with the increase of 𝑁𝑁𝑥𝑥  is not significant after 𝑁𝑁x = 100 in our 
empirical results. This is due to the higher under-training of the reservoir neurons in our ESN framework 
according to the expression above. 
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(a) 𝑆𝑆 = 0.2, 𝜌𝜌 = 1.4, 𝝀𝝀 = 0.001 and 90 % training - 10% validation configuration. 

 
(b) 𝑁𝑁𝑥𝑥 = 100, 𝜌𝜌 = 1.2, 𝝀𝝀 = 0.0005 and 90 % training - 10% validation configuration. 

      
(c) 𝑁𝑁𝑥𝑥 = 100, 𝑆𝑆 = 0.2, 𝝀𝝀 = 0.001 and 90 % training - 10% validation configuration. 

 
(d) 𝑁𝑁𝑥𝑥 = 100, 𝑆𝑆 = 0.2, 𝜌𝜌 = 1.4, and 90 % training - 10% validation configuration. 

Figure 3.6. RMSE performance of the designed ESN framework under various parameter choices. 
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Figure 3.7. The RMSE performance of the designed ESN framework for various training set sizes. 

In Figure 3.6(b), the RMSE performance versus the reservoir sparsity (𝑆𝑆) of our ESN framework is depicted. 
It is important to note that irrespective of the reservoir size, the sparsity factor in the weight matrix is 
generally set to be low (sparse configuration) on average to exploit random sparse echo state connections 
and to reduce the computational complexity. The empirical results obtained by our simulations for 𝑆𝑆 ∈
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} . As shown in figure that the RMSE 
performance shows a couple of local peaks and troughs for various sparsity values. More importantly, the 
minimum RMSE value is obtained when 𝑆𝑆 = 0.2 in our simulations. 

The spectral radius (𝜌𝜌), is the parameter which defines the maximum value of absolute eigenvalues of the 
reservoir matrix 𝑾𝑾. In other words, the width of the non-zero entry distribution of matrix 𝑾𝑾 is defined by 𝜌𝜌. 
In the literature, it has been stated that in most cases, 𝜌𝜌 < 1 ensures the echo state property [33]. However, 
note that the converse is also correct in some cases. It is also important to emphasize that the larger radius 
yields a better performance in tasks, which requires significant input history utilization. The result of our 
simulation is depicted in Figure 3.6(c) for the spectral radius values of 𝜌𝜌 ∈
{0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8}. In our simulations, the minimum RMSE is achieved 
when the spectral radius value of 𝜌𝜌 = 1.4 is adopted. 

Another crucial parameter for regression-based regularization for stability purposes is the noise magnitude 
(𝝀𝝀). Accordingly, the RMSE performance with respect to the noise magnitude is simulated and the result is 
depicted in Figure 3.6(d). As depicted in the figure, increase in the noise figure enhances the system 
performance due to the higher system stability. 

Lastly, in Figure 3.7, the RMSE performance of the ESN framework is compared against the size of the training set. 
Accordingly, the training set used in the simulations are proportioned into 𝒙𝒙% training set and (𝟏𝟏𝟏𝟏𝟏𝟏 − 𝒙𝒙)% 
validatin set, where 𝒙𝒙 denotes the 𝒙𝒙-axis values in the figure. As expected, the increase in the training size 
increases the system performance indefinitely since more information lets the ESN generalize the input 
dataset model to a greater extend. However, this is not the case for both 𝑳𝑳t = 𝟓𝟓𝟓𝟓% and 𝑳𝑳t = 𝟔𝟔𝟔𝟔%. The 
main reason behind this is the lack of sufficient information about the dataset, which prevents the ESN to 
learn about the dataset and present any learning capacity. 

 SLA violation prediction from ESN-based time series forecasts 

In this subsection, we will detail the utilization of the previously mentioned ESN time-series forecasting 
simulator for potential SLA violation detection, which will prevent any penalties onto the MVNOs. 
Accordingly, the SLA violation detection decision block, please refer to Figure 3.3, asks the following question: 
“Will there be an event where the rule is satisfied in future 𝑓𝑓 steps?”. Here, the rule will be defined as the 
SLA violations and 𝑓𝑓 number of steps that will be predicted in the future. For the sake of simplicity, the SLA 
violation rule/threshold is defined by, 𝑉𝑉th = 𝜇𝜇 + 𝛾𝛾𝛾𝛾  , where the parameter 𝛾𝛾  represents the arbitrary 
parameter to define the range of the SLA violation. 
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(a) 

 

(b) 

Figure 3.8. SLA violation detection by ESN based time series predictions; (a) training (black) and validation (red) 
sets, (b) validation window with both the actual data and the ESN predictions. 

In Figure 3.8, the ESN time-series forecasting, and SLA violation detection procedures are depicted. Both the 
training and validation sets (black curve) as well as the future ESN predictions (red curve) are given in Figure 
3.8(a). As can be seen from the figure, the ESN prediction values are able to follow the trend of the actual 
data very closely. This shows us that the ESN parameters are configured well enough to learn the general 
model of the aggregated traffic data. Similarly, Figure 3.8(b) focuses only on the validation set portion of 
Figure 3.8(a). As can be seen from Figure 3.8(b), the SLA threshold is also depicted by a dashed blue curve, 
where the data points above this threshold will be labelled as an “SLA violation”.  

 
Figure 3.9. Detected SLA violations; actual (black), predicted by ESN (red). 
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It is also important to note that future predictions are matching the actual data very well in capturing the 
fast fluctuations as well as the peak values. The accuracy of the time domain predictions is measured by the 
RMSE metric. Thus, for the prediction depicted in Figure 3.8, the RMSE between the actual data and the ESN 
predictions becomes 0.217. 

The SLA violation detection performance of the ESN is given in Figure 3.9. As can be seen from the figure, 
the time indexes which yield an SLA violation are labelled as “1” where the others are labelled as “0”. It can 
be clearly seen from the figure that the actual and ESN predicted SLA violations match very closely. To assess 
the performance of the ESN in terms of the SLA violation detections, another metric, namely SLA violation 
detection ratio (SVDR) is used. Accordingly, SVDR can be calculated by 

SVDR=
# of predicted SLA violations

# of actual SLA violations
 

where the number of predicted and actual SLA violation values are obtained from the ESN predictions and 
actual data, respectively. Therefore, for the results depicted in Figure 3.9, the SVDR of 0.878 is achieved. 
This achieved SVDR value practically means that our ESN framework is able to predict the SLA violations for 
the next time step with more than 87% accuracy. Further optimizations and performance enhancements on 
the ESN are carried to deliverable D4.3 for the sake of readability.  

 

3.2 RT-RIC: AT3S traffic routing/handover  
First, we would like to recall the original plan for the RT RIC that aims to implement a hybrid of model-free 
and model-based Deep Reinforcement Learning (DRL) algorithms, which is already explained in D4.1 [1]. In 
this deliverable, we only focus on the model-based predictor as depicted in Figure 3-. By using the 
terminology from the RL algorithm, the model-based predictor receives a state at t from the environment 
and predicts an output of a function of position at t+1, which is denoted as f(pt+1). By being able to predict 
what will happen at the next time step, then in the next Deliverable 4.3 we will focus on developing an RL 
agent that can utilize the prediction. For example, if the model-based predictor predicts that the RSSI of LiFi 
interface at the next time step is below a certain threshold, then the RL agent could anticipate accordingly, 
e.g., steer the traffic to other wireless access interfaces. In the following subsections, we will discuss our 
platforms to generate datasets, our methodology, our ML algorithm, and results.    

 
Figure 3-10. A model-based predictor that aims to predict an output of a function of position at t+1 given a state at 

t. Note that a similar figure is also shown in [12].  
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 Dataset 

The model-based predictor receives states from the environment as illustrated in Figure 3-10. States can be 
various things, such as RSSI or image snapshots from CCTVs. And, the output can be predictions, like the 
position of a user at the next time step, or a derived metric of it, e.g., RSSI at the next time step that can be 
estimated from the predicted future position. In the following discussions, we will first discuss our platforms 
to generate dataset, which is a collection of states from the environment. 

 owcsimpy 

For this contribution, we develop a library called owcsimpy1 whose current main usage is to calculate LiFi 
or optical wireless channel impulse response (CIR) for a given geometry description. An example of a 
geometry description is shown in Figure 3 where modelling of a small, indoor room consisted of a desk, a 
chair, a human, a LiFi-enabled UE, and a LiFi-enabled AP. The desk is modelled by a 3D plane; the chair is 
modelled by a cube, the human is modelled by a stack of cubes as can be seen also from Minecraft objects. 
The directions of the UE, the AP, and the human are represented by vectors as illustrated with arrows.   

                
Figure 3-11.A geometry description from owcsimpy. 

 
(a) 

  
(b) 

Figure 3-12. Simple use cases of owcsimpy and their corresponding CIRs. 

 
1 https://github.com/ardimasp/owcsimpy 
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By using owcsimpy, we can define a simple use case and obtain the optical wireless CIR for the defined use 
case. For example, Figure 3-(a) shows the optical wireless CIR for a scenario where a LoS link exists between 
the LiFi AP and a sitting user as depicted on the left side of the figure. Moreover, another simple scenario 
with NLOS link is also considered as depicted in left side of Figure 3-(b). The significant difference between 
the two wireless CIRs is the existence of a dirac impulse at the beginning of the curve. In addition, a lower 
received power shown in the bottom curve is mainly due to the fact the distance between the UE and the 
AP. 

The main benefit of owcsimpy is that it is lightweight compared to other similar softwares such as Zemax. 
The primary reason for this is that owcsimpy implements deterministic approaches in calculating CIRs, e.g., 
the iterative-method [34] or the frequency-domain approach [35], as opposed to the ray-tracing or stochastic 
methods. Therefore, we use owcsimpy to generate our dataset. The dataset that we generated is a 
collection of CIRs and the geometry descriptions. Specifically, our dataset consists of: 

• 3D location and orientation of UE and all objects, 

• location of objects (a human, a desk, and a chair),  

• CIRs and the corresponding frequency responses of LiFi channels,  

• pathloss of Wi-Fi channel. 

It is worth noting here that the locations of the UE are generated based three different random mobility 
models, i.e., random waypoint (RWP) [36], random direction (RD) [37], and the truncated Levy-Walk (LW) 
model [38]. Moreover, the random orientation of the UE is modelled based on [39].  

Figure 3.10 shows a sample of our dataset that is generated by using owcsimpy. Specifically, the left figure 
shows a snapshot of a geometry configuration of the user, UE, desk, chair, and a realization of the RWP 
model as shown by the black line. That is, the black line indicates the path that the user will follow. While 
moving, we also calculate, for example, the corresponding frequency responses of LiFi channel over time as 
shown in the right figure. In our dataset, we also collect the pathloss of Wi-Fi channel. The pathloss model 
(in dB) of Wi-Fi channel is taken from [40], which is defined as  

where, d is the distance between the UE and the Wi-Fi AP, fc is the center frequency of Wi-Fi signal in GHz, F 
is the number of floors traversed, and H is the number of humans traversed.  

𝑃𝑃L(𝑑𝑑, 𝑓𝑓c) = 40.5 + 20 log10
𝑓𝑓c

2.4
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𝐹𝐹+2
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5𝐻𝐻𝑓𝑓c
2.4

 

 

      
Figure 3.10. A top view of a geometry description, where the black line denotes the path that the user will take 

based on the RWP model (left). The corresponding frequency responses of the UE that travels following the black 
line in the left figure (right). 
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Figure 3.11. The dimensions of a human model. 

Geometry details of the objects that are used to generate our dataset are as follows. The dimension of the 
room is 4m x 3m x 3m. The locations of both LiFi and Wi-Fi AP are at the center of the ceiling. The dimensions 
of the chair and the table are 0.4m x 0.4m x 0.4m and 1.2m x 0.9m, respectively. Figure 3.11 shows the 
dimensions of a human model. 

Based on the descriptions above, our dataset is generated based on the flowchart below. Note that N is the 
cardinality of the dataset, where we set N as 12,000. The random mobility model is uniformly picked between 
RWP, RD, and LW with the minimum speed of 0.1 m/s, the maximum speed of 1 m/s, and the maximum 
waiting time of 0.5 s.  

 
Figure 3.12. The flowchart for dataset generation. 

 

 CCTV Emulator 

In the previous discussion, we mention that we collected both CIRs from LiFi channel and pathloss from Wi-
Fi channel. This indicates that a mixed of information source is used, i.e., LiFi and Wi-Fi. In this deliverable, 
we are also interested to mix another source of information that most likely will be available in indoors, 
which is images from CCTV. It is obvious from Figure 3 to Figure 3.10 that the objects are oversimplified. That 
is, 3D objects are modelled by combining 2D planes and cubes. Not even, for example, lighting and 
shadowing are considered.  

 

    
Figure 3.13. Comparisons between the objects rendered by owcsimpy and Unity 3D Game Engine. 
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Therefore, we need a sanity check mechanism to measure the reliability of modelling methodology of 
owcsimpy.  In this deliverable, we intend to use a game engine that can support close-to-reality object 
renderings. Specifically, we use Unity 3D Game Engine2 as a benchmark platform.  

We assume that there are 4 CCTVs that are located at each top corner of the room. Point-to-point 
comparisons from each CCTV are depicted in Figure 3.13Figure 3.13. Similarly, we collect 12,000 realizations 
generated from the random mobility models that are considered in the previous discussion. 

  Methodology 

In this subsection, our objectives and methodologies are detailed, where Figure 3.14 summarizes them. The 
goal in this deliverable is to predict the time-series position at t+1 or a derived metric, i.e., f(pt+1) such as RSSI 
at t+1. However, before that, there are prior objectives that need to be investigated. As we will rely on 
owcsimpy to generate various forms of information, such as images, CIRs, or pathloss, especially for images, 
we need a mechanism to justify if the platform is sufficiently good to generate dataset of images. For other 
forms of data, i.e., CIR and pathloss, the reliability depends on the referenced model, i.e., [34] and [35] for 
LiFi CIR and [40] for Wi-Fi pathloss model. Particularly, image-based indoor localization will be used. Then, 
the next objective is to investigate if combining various information sources will make the performance 
better. Similarly, we will use indoor localization task results as our justification. Lastly, the time-series 
prediction evaluation of pt+1 and f(pt+1) will be conducted. The main reason to consider both of them is to 
prepare for thorough investigations when we combine the model-based predictor to the model-free RL 
model. Next, we will explain our methodologies individually.  

 Methodology for Objective-1 

Figure 3.15 illustrates our methodology for the first objective. First, the datasets that contain images from 
cameras will be split into train/val set and test set. Then, pre-processing, such as image rescaling, is 
conducted before feeding images to CNN architectures. Next, the training phase that uses train/val set from 
owcsimpy and the Unity is performed individually. As we want to predict the position of UE, we will use 
Mean Square Error (MSE) as the loss function. The MSEs for training and validation will be used to stop the 
training early in order to avoid overfitting. There are two pretrained models that will be generated, i.e., 
CNN3-O that uses the dataset generated by owcsimpy and CNN-U that uses the dataset generated by the 
Unity engine.  

  

 
Figure 3.14. Objectives and methodologies. 

 
2 https://unity.com/ 
3 Here, CNN stands for Convolutional Neural Network 
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Figure 3.15. Methodology for Objective 1. 

After obtaining the pretrained CNN models, there are four MSE metrics that will be measured to test 
generalization capability of the models, i.e.: 

• msetest,o: MSE for the CNN-O that uses test set from owcsimpy, 

• msetest,ou: MSE for the CNN-U that uses test set from the Unity game engine, 

• msetest,u: MSE for the CNN-U that uses test set from the Unity, and 

• msetest,uo: MSE for the CNN-U that uses test set from owcsimpy. 

Moreover, the pretrained model will be equipped with a saliency map in order to have the Explainable AI 
(XAI) [44], which can tell us what the model looks at while making a prediction. The output of XAI is an image 
that is overlaid with a heatmap. 

 Methodology for Objective-2  

The methodology for the second objective is quite straightforward. The main goal of this objective is to 
investigate the performance gain of the predictor when we combine all sources of information, i.e., images, 
LiFi RSSI, and Wi-Fi RSSI. We will combine them and measure the MSE. The obtained MSE is, then, compared 
to observe the performance gain with respect to the result from the first objective.  

It is worth noting that Wi-Fi RSSI is calculated by using the assumption that the transmit power of the UE is 
15 dBm per antenna and 20 dBm per antenna for the AP based on [40]. The RSSI of LiFi is calculated based 
on the DC channel gain of the CIRs and the total optical transmit power assumption of 10 W based on [42].  
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 Methodology for Objective-3 

There are two tasks that are targeted in this objective. First, we will predict the position of the user at the 
next time step, i.e., pt+1. Then, we also investigate the prediction of f(pt+1). Specifically, the aim is to predict 
the LiFi RSSI at the next time step. 

  ML Algorithm 

In this subsection, we will discuss the deep learning architectures that are used in each objective. 

 Deep Learning Architecture for Objective-1 

Two different CNN architectures are used for this objective, namely VGG16 and MobileNet-v2. These two 
architectures are chosen to compare their performances and complexities. That is, VGG16 has more 
computational complexities and has a better performance on the ImageNet dataset. A pretrained model 
from each architecture that is trained to the ImageNet dataset is used. It is worth noting that the size of input 
image of VGG16 should be rescaled to 240x240x3 px, and the size of input image of MobileNet-v2 should be 
rescaled to 160x160x3 px. As we have 4 input images for each position, we ensemble the CNN architecture 
and calculate the average as depicted in Figure 3.16 and defined in following equation 

𝐩𝐩�𝑡𝑡 = 0.25�𝑓𝑓𝐖𝐖𝑖𝑖
(𝐗𝐗𝑖𝑖),

4

𝑖𝑖=1

 

where W is the weights of the CNN model (fWi denotes a parameterized CN) and Xi is the image that is 
captured from the ith camera as depicted in Table 3-16.  

 Deep Learning Architecture for Objective 2 

Figure 3.17 shows the deep learning architecture for objective 2. The pretrained feature learning layers are 
obtained from the first objective. The outputs of the feature learning are fed into the fully-connected layer, 
which consists of 1 input layer having 16386 neurons4, one hidden layer having 4096 neurons, and an output 
layer. As in the first objective, MSE is used as the loss function.  

 

 
Figure 3.16. Ensemble architecture for Objective 1. 

 
4 The last layer of the feature learning of VGG16 gives 4096 channels. Since we have 4 feature learnings and two additional RSSI 
information, then the input layer of the fully-connected has 16386 neurons. 
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Figure 3.17. Deep learning architecture for Objective 2. 

 

 Deep Learning Architecture for Objective 3 

For the third objective, we implement a class of recurrent neural network (RNN), namely long- short-term 
memory (LSTM). Figure 3.18 shows the integration of CNN-based model and LSTM. The CNN-based model is 
the pretrained model that is obtained from the second objective. The model receives a combination of 
images and RSSIs at different time instances. The variable T shows the memory length of our model. The 
output states of all LSTM cells are then fed to a fully connected layer that has a hidden layer. In this 
deliverable, we implement T=8 and the number of neurons in the hidden layer is 4. 

 
Figure 3.18. Deep learning architecture for Objective-3. 
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 Results and Discussions  

Our results and discussions are explained in this subsection. It is worth noting that the train/val and test sets 
are split with the ratio of 70% and 30%. During the training process, the Adam optimizer [43] is used with 
the learning rate of 0.001. 

 Objective 1 

First, we measure the MSEs according to Figure 3.15. Figure 3.19 shows the obtained MSE results.  

It is obvious from the figure that for each metric, VGG16 gives a better accuracy than that of MobileNet-v2. 
The use of dataset also affects the accuracy. That is, the use of Unity dataset gives a better accuracy 
compared to that of owcsimpy. However, the generalization of CNN with the owcsimpy dataset is better 
to that of CNN with the Unity dataset. This fact can be seen by comparing msetest,ou and msetest,uo.  Values of 
the MSEs are detailed in Table 3-3. 

    

(a) VGG16                                                             (b) MobileNet-v2 

Figure 3.19. CDF of MSE of each architecture for Objective 1. 

 

Table 3-3. MSE of VGG16 and MobileNet-v2 for Objective 1 

Metrics Criterion VGG16 (in cm) MobileNet-v2 (in cm) 

msetest,o 

5% CI 12.41 15.49 

mean 20.35 22.38 

Std. dev. 4.63 4.93 

95% CI 27.42 30.72 

msetest,ou 

5% CI 14.45 14.06 

mean 22.69 27.43 

Std. dev. 5.16 6.84 

95% CI 31.31 32.82 

msetest,u 

5% CI 10.90 11.19 

mean 18.69 20.25 

Std. dev. 4.35 5.16 

95% CI 25.00 29.43 

msetest,uo 
5% CI 14.07 16.62 

mean 25.19 27.59 
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Std. dev. 6.53 6.92 

95% CI 35.75 37.79 

 

 
Figure 3.20. GRAD-CAM output of VGG16. 

In this subsection, we also add an XAI in order to ensure that our ML models are looking at the correct objects 
when they make a prediction by means of a saliency map method. Specifically, we implement the GRAD-
CAM [41], and an output sample of GRAD-CAM to one of test images is shown in Figure 3.20. The output of 
the GRAD-CAM is a heatmap image, where the heatmap shows the features that are significant. Our 
interpretation to the GRAD-CAM result is that our model uses static objects as references to estimate the 
position of the dynamic object, i.e., the user. Static objects include corners of the room, the desk, and the 
chair.  

Based on the fact that the performance difference of the ML model with the dataset that is generated by 
using owcsimpy and Unity game engine is minor, we will use owcsimpy for the second and third 
objectives.  

 Objective 2 

Figure 3.21 shows the MSE comparisons that are obtained for the second objective. The statistics are detailed 
in Table 3-4. 1 cm to 2 cm gain is achieved by adding the RSSI information.  

 
Figure 3.21. MSE results for Objective 2. 

 

Table 3-4. Statistics comparisons of MSE results for Objectives 1 and 2 

Objectives 5% CI Mean Std. Dev. 95% CI 
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1  12.41 20.35 4.63 27.42 

2 11.44 18.35 4.56 25.50 

 

 Objective 3 

Figure 3.22 depicts one of prediction results of our ML model as shown by comparing the red line and the 
black line. The CDF is shown on the right figure of Figure 3.22, and the statistics are listed on Table 3-5. It is 
obvious that by considering the past-history of the estimated position, the accuracy of the prediction 
increases.  

Here, we also measure the LiFi RSSI based on the predicted position (which is denoted by 𝑓𝑓(𝐩𝐩�𝑡𝑡+1)) and 
comparing it with an end-to-end training for the LiFi RSSI (which is denoted by 𝑓𝑓(𝐩𝐩𝑡𝑡+1)). 

  
Figure 3.22. Prediction results as shown in the red line, and the black line shows the test data (left). The CDF of 

MSEs for the third objective (right). 

 

Table 3-5. Statistics comparison of MSE results for all objectives.  

Objectives 5% CI Mean Std. dev. 95% CI 

1  12.41 20.35 4.63 27.42 

2 11.44 18.35 4.56 25.50 

3 6.11 16.66 5.23 24.58 

 

 

 
Figure 3.23. Comparing LiFi RSSI based on the predicted position 𝒇𝒇(𝐩𝐩�𝒕𝒕+𝟏𝟏)  and the end-to-end LiFi RSSI learning 
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𝒇𝒇�(𝐩𝐩𝒕𝒕+𝟏𝟏). 

One of the results are show in  Figure 3.23. The MSE of 𝑓𝑓(𝐩𝐩�𝑡𝑡+1) in the figure below is 4.39 dBm, while the 
MSE for the other one is 1.69 dBm. Therefore, whenever it is possible, it is better to perform an end-to-end 
learning. However, predicting the next position might be useful for our RL agent later. 

3.3 RAN slicing in multi-tenant networks 

 Initial implementation 

This section considers a private venue network owner of a NG-RAN infrastructure composed of a number of 
cells with diverse deployment characteristics (i.e., access technology, cell radius, transmission power, 
frequency of operation). Each cell has a different amount of physical resources that provide a certain cell 
capacity. These physical resources and their amount depend on the specific access technology used by the 
cell, e.g., Physical Resource Blocks (PRBs) for the case of 5G NR or LTE, airtime in case of Wi-Fi, etc. Following 
the WAT as a Service (WATaaS) service delivery model explained in deliverable D2.2 [2], the network is 
shared among different tenants, each of them provided with a RAN Slice Instance (RSI). Then, the considered 
problem consists in determining how the available capacity should be distributed among the different RAN 
slices in the different cells while fulfilling the SLA requirements of each tenant and at the same time achieving 
an efficient utilisation of the available resources.  

Section 4.4.3 of deliverable D4.1 [1] presented the initial design of a Multi Agent Reinforcement Learning 
(MARL) algorithmic solution based on Deep Q-Network (DQN) to deal with this capacity sharing problem. 
Starting from this design, the functional model and components of the solution in the context of the 5G-
CLARITY architecture are illustrated in Figure 3.24. The MARL solution resides at the AI engine and consists 
of two main components, namely the ML inference host and the ML training host. These components receive 
inputs and/or provide outputs from/to the other elements of the 5G-CLARITY architecture through the intent 
engine as it was explained in Section 6.3.4 of 5G-CLARITY D4.1 [1]. 

The solution is designed to operate with N cells and K RAN slices and to keep track of the traffic variations of 
the different tenants in periods (time steps) of ∆t minutes. This is achieved through the dynamic 
configuration of the resource quota of each cell on a per RAN slice basis, assuming the 5G-CLARITY wireless 
dedicated quota model explained in Section 2.1. The value of the resource quota for the k-th slice in the n-
th cell at time step t is denoted as αt(k,n). As shown in Figure 3.24 the resource quota is determined by the 
ML inference host and is provided through the intent engine to the slice manager that will configure it in the 
RAN nodes. This configuration will depend on the specific technology of each cell. For example, in the case 
of 5G NR cells, the resource quota is mapped to the rRMPolicyDedicatedRatio attribute defined in the 3GPP 
5G Network Resource Model [45].  

The SLA specification is done in terms of two parameters that constitute the RAN NSI service profile defined 
by the private network operator and reflect the requirements to be fulfilled:  

• Scenario Aggregated Guaranteed Bit Rate SAGBR(k): This specifies the aggregate bit rate to be provided 
to tenant k, if it has enough demand, across all the cells in the network during a time period of ∆t 
minutes. It is worth noting that this parameter would correspond to the dlThptPerSlice attribute 
included in the ServiceProfile <<datatype>> of [45] and directly inherited from the GSMA 
Generic network Slice Template (GST) [45], which provides a standardized list of attributes (e.g. 
performance related, function related, etc.) that can be used to characterize different types of 
network slices. 

• Maximum Cell Bit Rate MCBR(k,n): This specifies the maximum bit rate that can be provided to tenant 
k in cell n. This limit is defined in order to avoid that all the capacity of a cell is assigned to a single 
tenant under highly extreme heterogeneous spatial load distributions with tenants demanding 
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excessive capacity in certain cells. Then, it is assumed that, when the demand of the tenant in one 
cell exceeds MCBR(k,n), the SLA only requires to provide MCBR(k,n) in this cell, even if this could 
mean that the aggregate SAGBR(k) is not provided across all cells. The MCBR(k,n) parameter would 
be related with the dlThptPerUe and the termDensity attributes defined in [45] that are inherited 
from the GSMA GST. They specify, respectively, the average data rate delivered by the network slice 
per UE and the maximum user density over the coverage area of the network slice. Then, MCBR(k,n) 
is the product of dlThptPerUe for slice k, termDensity for slice k and the service area of cell n.  

The ML inference host is in charge of determining the resource quota for each slice and cell using the learnt 
model provided by the ML training host. For this purpose, the ML inference host includes K per-slice action 
selection policies whose outputs are injected to the resource quota computation function. 

The action selection policy π(k) of slice k gets the network state st(k) observed for this slice at the time t when 
the policy is executed and determines the action at(k) to be applied for this slice. The action at(k) is composed 
of N per-cell actions that take one out of three possible values corresponding to: increase the resource quota 
αt(k,n) for slice k in cell n in an amount of Δ for the next time step, maintain the same resource quota or 
decrease it in an amount of Δ.  

In turn, the state st(k) includes N different per-cell components, each one given by the triple <ρt(k,n), αt(k,n), 
αava,t(n)>  where ρt(k,n) is the fraction of physical resources occupied by the slice k in cell n at time t and 
αava,t(n) is the total amount of resource quota in the cell not allocated to any slice. While the values of αt(k,n) 
and αava,t(n) are directly available at the ML inference host, the value of ρt(k,n) is obtained from the 
Performance Measurements (PM) collected from the telemetry system at the different cells. 
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Figure 3.24. Functional model of the Deep Q Network-based RAN slicing solution  

For example, for the case of 5G NR and based on [47], this metric would be obtained as the average over the 
interval (t-∆t,t) of the ratio between the “DL PRB used for data traffic”, which measures the number of PRBs 
used in average for data traffic in a given slice and cell, and the “DL total available PRB”, which measures the 
number of available PRBs in the cell.  

Following the DQN approach, the action selection policy π(k) of the k-th slice for a given state st(k) is defined 
as argmaxat(k) Qk(st(k), at(k),θk) where Qk(st(k), at(k),θk) is the output of a DNN for the input state st(k) and the 
output action at(k). The internal structure of the DNN is specified by the vector of parameters θk that contains 
the weights of the different neuron connections. The optimum values of θk that determine the policies to be 
followed by the different slices in order to maximize the cumulative reward are learnt offline by the ML 
training host who provides them to the ML inference host.  

The resource quota computation function determines the value of the resource quota αt(k,n) to be assigned 
to each slice and cell for the next time step by applying the increase/maintain/decrease actions provided by 
the action selection policies of all the slices. When applying the actions, this function ensures that the 
MCBR(k,n) values are not exceeded. Moreover, since the action selection policies for the different slices 
operate independently, this function also checks that the aggregated resource quota for all the slices in a cell 
after applying the actions does not exceed 1 in order not to exceed the cell capacity. If this happens, it applies 
first the actions of the slices involving a reduction or maintenance of the resource quota and the remaining 
capacity is distributed among the slices that have increase actions. This distribution is proportional to their 
SAGBR(k) values, as long as their current throughput is not already higher than SAGBR(k). For doing this 
adjustment, the measured throughput per slice across all the cells in the last time step is needed, which is 
assumed to be obtained from the telemetry system.  

The ML training host is in charge of learning the DNN parameters θk that determine the per-slice action 
selection policies. This is done through a multi-agent DQN approach in which each DQN agent learns the 
optimum policy of a different RAN slice by continuously interacting with a training environment and updating 
the DNN parameters as a result of these interactions. The training environment considered here is a network 
simulator that mimics the behavior of the real network when varying the offered load of the different slices 
in the different cells and when modifying the resource quota allocated to each slice as a result of the actions 
made by the DQN agents. In this respect, the simulator is fed by training data consisting of multiple time 
patterns of the required capacity (i.e., offered load) of the slices in the different cells. This data can be either 
built synthetically or extracted from real network measurements through the 5G-CLARITY data management 
framework.  

For carrying out the training process, each DQN agent is composed by three different elements: (i) The 
evaluation DNN, which corresponds to the function Qk(st(k),at(k),θk) being learnt that will eventually 
determine the policy to be applied at the ML inference host; (ii) The target DNN, which is another neural 
network with the same structure as the evaluation DNN but with weights 𝜃̅𝜃k. It is used for obtaining the so-
called Time Difference (TD) target required for updating the evaluation DNN; (iii) The experience data set 
(ED), which stores the experiences of the agent resulting from the interactions with the training environment.   

The interactions between the DQN agent and the training environment occur in time steps of (simulated 
time) duration ∆t. In each time step t, the DQN agent of the k-th slice observes the state st(k) in the training 
environment and selects an action at(k). Action selection is based on an ε-Greedy policy that, with probability 
1-ε, chooses the action that maximizes the output of the evaluation DNN, and, with probability ε, chooses a 
random action. As a result of applying the selected action, the training environment generates a reward 
value rt(k) that assesses how good the action was from the perspective of the desired behavior. The reward 
function includes three components with corresponding weights ϕ1, ϕ2, ϕ3 that capture, respectively, the 
SLA satisfaction ratio of the slice k, the aggregated SLA satisfaction ratio for the rest of slices k’≠k and the 
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capacity utilization. The SLA satisfaction ratio is a metric that measures the obtained throughput by the slice 
in relation to the SLA requirement, and the capacity utilization measures the throughput of the slice in 
relation to the capacity corresponding to the assigned resource quota. Detailed formulation of these terms 
was given in Section 4.4.3 of 5G-CLARITY D4.1 [1].  

As a result of the interactions between the training environment and the DQN agent, each experience of the 
ED is represented by a tuple that includes: i) the state observed at the beginning of a given time step; ii) the 
selected action; iii) the obtained reward as a result of this action; and iv) the new state observed at the end 
of the time step duration. The experiences stored in the ED are used by the DQN agent to progressively 
update the values of the weights of the evaluation and target DNNs. The reader is referred to section 4.4.3 
of deliverable D4.1 for details on the mathematical formulation of this process. The training process stops 
after a sufficient number of time steps that ensures the convergence of the process. At this point, the ML 
training host is ready to provide the evaluation DNN parameters θk so that the model can be applied on the 
real network using the ML inference host. Notice that it could also be possible to continue with the training 
process in parallel to further update the ML model. In this case the DQN agents would obtain the states and 
rewards from the real network instead of from the training environment. 

 Evaluation methodology 

The proposed approach is evaluated by means of system-level simulations. The simulation model has been 
developed in Python by using the library TF-Agents [48], which provides tools for the development of deep 
reinforcement learning models, including DQN. The simulation environment considers a network with a 
number of cells and takes as inputs the offered load patterns of the different tenants in each of the cells. The 
simulator operates in two stages as explained in the following: 

• Training stage: This corresponds to the operation of the ML training host. Training has been 
conducted by using a dataset composed of multiple synthetically generated offered load patterns of 
the tenants in the different cells. Each pattern includes the traffic in b/s required by the tenant during 
one day, measured in periods of 15min. The different offered load patterns are injected one after 
the other in the simulator that operates in time steps of duration ∆t. In every time step, the DQN 
agents select the actions that determine the resource quota assigned to each slice in each cell. Then, 
the number of physical resources (i.e., PRBs) that are utilized by the slice is the minimum between 
the assigned PRBs in accordance with the resource quota and the required PRBs, which are 
determined by the offered load and the spectral efficiency. Then, the throughput achieved by each 
slice is obtained using the number of utilized PRBs and the spectral efficiency. This is used to compute 
the reward that, together with the selected action and the actual and previous states, is stored in 
the ED and is used to update the weights of the evaluation and target DNNs. This process is repeated 
until reaching the maximum number of training time steps. At the end, the resulting weights of the 
evaluation DNN determine the trained policy to be used by the ML inference host. 

• Evaluation stage: Once the training stage has been completed, the ML inference host assesses the 
obtained policy using the same system level network simulator of the training, considering the actual 
offered load patterns of the different tenants in each cell for one day duration. This pattern 
corresponds to one of the patterns of the training dataset adding on top of it a random fluctuation 
of 5%. The trained policy is executed every time step to obtain the resource quota values that are 
applied in the difference cells. Based on this, the relevant Key Performance Indicators (KPIs) are 
determined. 

The main KPIs to assess the performance of the model are the following ones:  

• Assigned capacity to tenant k at time step t (At(k)): It is measured in b/s and is obtained from the resource 
quota αt(k,n) and the capacity of each cell cn as: 
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 𝐴𝐴𝑡𝑡(k) =� cn·𝛼𝛼𝑡𝑡(k,n)
N

n=1

  

 

• Reward of tenant k (Rk): It is computed as the average of the reward rt(k) obtained by the tenant over a 
duration of G time steps (i.e a total time of G·.,∆t minutes).  

 Rk=
1
G
�𝑟𝑟𝑡𝑡(k)
G-1

t=0

  

• SLA satisfaction of tenant k (SSk): It measures the ratio between the throughput Tt(k) provided to tenant 
k and the minimum between the aggregated offered load of the tenant Ot(k) and its SAGBR(k) value. It is 
measured in each time step and it can be averaged over a duration of G time steps, that is:  

 SSk = 
1
G
�min �

Tt(k)
min(Ot(k),SAGBR(k)) ,1�

G-1

t=0

  

It ranges 0≤SSk≤1, taking SSk=0 value when the SLA is not satisfied and SSk=1 when it is fully satisfied. 
Note that the definition of SSk considers that when Ot(k) is lower than the SAGBR(k), Ot(k) needs to be 
provided, whereas in the case that Ot(k) is greater than SAGBR(k), at least SAGBR(k) needs to be provided.  

• System utilization (U): It is computed as the average for all cells of the ratio between the number of 
physical resources used by all the tenants in a cell during a time step and the total number of physical 
resources in the cell. It is measured in each time step and can be averaged over a duration of G time steps, 
that is:  

𝑈𝑈 =
1
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�

1
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where ut(k,n) is the number of physical resources used by tenant k in cell n averaged during time step t 
and NT(n) is the total number of physical resources available in cell n. 

 Evaluation results 

The performance evaluation of the proposed approach is carried by means of two different case studies. 
Case study 1 consists in a first assessment of the algorithm in a simple scenario composed of a single cell. In 
turn, case study 2 presents a more detailed analysis of the algorithm in a multi-cell scenario including the 
sensitivity to the configuration parameters affecting the determination of the resource quota. 

 Case study 1 

This case study assumes a single cell scenario that provides service to two tenants, denoted as Tenant 1 and 
Tenant 2. The parameters of the scenario are presented in Table 3-6. The training of the DQN model has 
been performed using the parameters of Table 3-7. This includes the hyperparameters of the DQN as well as 
other parameters of the model, such as the time step duration ∆t, the action step ∆ that specifies the 
increase/decrease in resource quota associated to an action or the weights of the reward function (see 
details in section 4.4.3 of D4.1 [1]). To obtain the values of these parameters, a prior analysis of the model 
behavior with different combinations of parameters has been conducted.  

Table 3-6 Scenario Parameters for Case Study 1 
Parameter Value 

Number of cells 1 
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Number of tenants 2 
PRB Bandwidth 360 kHz 

Number of available PRBs 51 PRBs 
Average spectral efficiency 5 b/s/Hz 

Cell capacity (cn) 91.8 Mb/s 
Total capacity (C) 91.8 Mb/s 

SAGBR(k) 
Tenant 1 55 Mb/s (60% of total capacity) 
Tenant 2 36 Mb/s (40% of total capacity) 

MCBR(k) Tenant 1 73  Mb/s (80% of total 
capacity) Tenant 2 

 

Table 3-7 Training Parameters for Case Study 1 
Parameter Value 

Initial collect steps 2000 
Maximum number of training 

time steps  160000 

Experience Replay buffer 
maximum length  105 

Mini-batch size 100 
Discount factor 0.9 
Learning rate 0.001 

ɛ value (ɛ-Greedy) 0.1 
Neural network architecture 1 layer x 100 nodes 

Step time (Δt) 3 min 
Action step (Δ) 0.3 

Reward weights (j1, j2, j3) (0.3, 0.2, 0.5) 
 

The evaluation of the trained model has been performed by considering two different offered load patterns, 
denoted as Situation A and Situation B. They are characterised by the temporal evolutions of Figure 3.25 and 
Figure 3.26, respectively, which plot the aggregated offered load Ot(k) by the two tenants in the cell during 
a day. Situation A corresponds to an offered load pattern where Tenant 1 requires more capacity than Tenant 
2 during the morning while the contrary case is given during the afternoon. This complementarity among 
tenants allows better illustrating the flexibility of the algorithm to adapt the resource allocations to each 
tenant. Situation B presents the contrary case, where the roles of Tenant 1 and Tenant 2 are reversed. Notice 
that, in Situation A, the aggregated load by both tenants does not exceed the total capacity (CT=91.8Mb/s) 
at any time while in Situation B the total capacity is exceeded for a long period of time. 

 
Figure 3.25. Offered load of Tenant 1 and Tenant 2 in situation A of case study 1 
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Figure 3.26. Offered load of Tenant 1 and Tenant 2 in situation B of case study 1 

Figure 3.27 and Figure 3.28 compare the assigned capacity At(k) with the offered load and the SAGBR(k) for 
Tenant 1 and Tenant 2 in Situation A and Situation B, respectively. In Situation A, the offered load of both 
tenants is generally served as there is enough capacity to fulfil the requirements for both of them. The 
capacity sharing mechanism provides the demanded capacity to both tenants, including those cases when 
the offered loads of Tenant 1 and Tenant 2 exceed SAGBR(1) and SAGBR(2), respectively, making efficient 
use of the available capacity and exhibiting the capability to exploit the complementarities in the traffic 
profiles between both tenants. In Situation B, a similar behaviour is observed but the assigned capacity is 
lower than the offered load during the periods where more capacity than available is requested. In those 
periods, the required capacity is given to the tenants whose offered load is lower than SAGBR(k), which 
shows that the capacity sharing function assures the SAGBR(k) established in the SLA.  

 
Figure 3.27. Offered load O(k) vs assigned capacity in Situation A of case study 1 

 

 
Figure 3.28. Offered load O(k) vs assigned capacity in Situation B of case study 1 

For benchmarking purposes, the performance obtained in Situation B by the proposed approach has been 
compared against two reference capacity sharing solutions: Reference 1, which considers SAGBR(k) as the 
capacity assigned to tenant k in any case, and Reference 2, which considers that both tenants share the 
overall capacity independently on SAGBR(k). In Reference 2, whenever more capacity than available is 
requested, the capacity is distributed among tenants according to their offered load. Figure 3.29 and Figure 
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3.30 show the CDF of the SLA satisfaction ratio for Tenant 1 and Tenant 2, respectively. While Reference 1 
always fulfils the SLA, Reference 2 presents much lower SLA satisfaction, given that both tenants are provided 
with lower throughput than required when the offered load exceeds the total capacity. The proposed MARL 
solution is able to improve the SLA satisfaction of Reference 2 by serving all the offered load as long as it is 
lower than SAGBR(k). Moreover, Figure 3.31 compares the CDF of the system utilisation in percentage of the 
three approaches. Reference 1 presents the lowest system utilisation, as no more than SAGBR(k) is provided 
even though there is enough capacity unused in the system to satisfy the offered load. However, the 
proposed MARL approach substantially improves the utilisation, with a performance very close to Reference 
2. These results show how the presented approach allows satisfying the SLA and making efficient use of the 
resources, achieving a good trade-off between the two benchmarking schemes. This overall better behaviour 
of the proposed approach is also reflected in the obtained reward values for the different strategies. 
Specifically, the obtained average reward of the two tenants (i.e. the average of R1 and R2) is 0.972 for the 
MARL approach, while for References 1 and 2 it is, respectively, 0.938 and 0.953.   

 

Figure 3.29. CDF of SLA satisfaction of Tenant 1 in Situation B 

 
Figure 3.30. CDF of SLA satisfaction of Tenant 2 in Situation B 

 
Figure 3.31. CDF of system utilisation in Situation B 



D4.2 – Validation of 5G-CLARITY SDN/NFV Platform, Interface Design 
            with 5G Service Platform, and Initial Evaluation of ML Algorithms  

98 

 
5G-CLARITY [H2020-871428] 

 Case study 2 

This case study intends to analyse the sensitivity of the proposed MARL algorithm to the two operational 
parameters that determine how and when the resource quota allocated to each tenant is modified, namely 
the action step ∆ and the time step ∆t. This study is performed in a multi-cell scenario with two tenants. The 
scenario parameters are presented in Table 3-8. The training of the DQN model has been performed using 
the parameters of Table 3-9, which have been selected from a preliminary analysis of the model behavior 
with different combinations of these parameters. As observed, the study considers different configurations 
of the action step ∆ that determines the increase/decrease in resource quota for each tenant, ranging 
between 0.001 and 0.09, and the time step values ∆t that determine the times at which the resource quota 
is modified, ranging between 1 and 15 min.  

Figure 3.32 presents the aggregate offered load of each tenant Ot(1), Ot(2) across all the cells of the scenario 
that is considered for the evaluation of the learnt model during one day. The figure also includes the 
aggregate load of both tenants (i.e. Ot(1)+Ot(2)), their SAGBR(k) values and the total system capacity. The 
considered loads of the two tenants have a complementary behaviour: Ot(1) has higher values during the 
beginning of the day and at night whereas Ot(2) reaches higher values at the middle of the day. 

Table 3-8. Scenario Parameters for Case Study 2 

Parameter Value 
Number of cells 5 

Number of tenants 2 
PRB Bandwidth 360 kHz 

Number of available PRBs 65 PRBs 
Average spectral efficiency 5 b/s/Hz 

Cell capacity (cn) 117 Mb/s 
Total capacity (C) 585 Mb/s 

SAGBR(k) 
Tenant 1 351 Mb/s (60% ot total capacity) 

Tenant 2 234 Mb/s (60% ot total capacity) 
 

MCBR(k) 
Tenant 1 

93.6 Mb/s (80% of cell capacity) 
Tenant 2 

 

Table 3-9. Training Parameters for Case Study 2 

Parameter Value 
Initial collect steps 5000 

Maximum number of training 
time steps  100000 

Experience Replay buffer 
maximum length  107 

Mini-batch size 256 

Discount factor 0.9 
Learning rate 0.0001 

ɛ value (ɛ-Greedy) 0.1 
Neural network architecture 2 layers x 100 nodes 

Step time (Δt) {1, 3, 5, 15} min 

Action step (Δ) {0.01, 0.03, 0.05, 0.07, 0.09} 

Reward weights (j1, j2, j3) (0.3, 0.2, 0.5) 
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Figure 3.32. Offered loads of Tenant 1 and 2 during a day considered for the evaluation of case study 2 

To capture different extreme cases, the pattern includes situations in which the offered loads of the tenants 
exceed their SAGBR(k) for some times during the day (e.g. between 0 and 500 min or after 1000 min for 
Tenant 1 or between 500 and 1100 min for Tenant 2) and situations in which the total offered load Ot(1)+Ot(2) 
is higher than the available system capacity (e.g. during the time period from 900 min to 1300 min). A uniform 
distribution of the load among the different cells has been considered. 

In order to analyse the impact of the values of time step duration Δt and action step Δ on the evolution of 
the training, the policies learnt for Tenant 1 and Tenant 2 (i.e. π(1) and π(2)) every 10000 time steps of the 
training stage have been evaluated using the offered loads of Figure 3.32. This allows capturing the evolution 
of the training process when increasing the number of training steps. Then, Figure 3.33 and Figure 3.34 show 
the evolution of the aggregate reward of the two tenants, i.e. R1+R2, averaged over the whole day, for Δ=0.01 
and Δ=0.07, respectively, when considering all the values of Δt={1, 3, 5, 15} min. The selected values Δ=0.01 
and Δ=0.07 are, respectively, representative of small and large action step values. Some similarities are 
obtained for the training evolutions for Δ=0.01 and Δ=0.07. For both cases, higher average reward is achieved 
for lower Δt values. The reason is that lower values of Δt provide a better adaptability to the offered loads 
since the policy is triggered more frequently, so the policy can easily react to changes. However, when 
comparing the results obtained for Δ=0.01 and Δ=0.07 given a certain Δt, different average rewards are 
obtained. In the case of Δt=1min higher average reward values are achieved for Δ=0.01, whereas for 
Δt=15min higher average rewards are obtained for Δ=0.07.  

 
Figure 3.33. Average reward every 10000 steps during the training for Δ=0.01 and Δt={1,3,5,15} min 
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Figure 3.34. Average reward every 10000 steps during the training for Δ=0.07 and Δt={1,3,5,15} min 

These results suggest that some combinations of Δ and Δt are more suitable to respond to the offered loads 
of Figure 3.33.  

More differences are observed between the training evolution when using Δ=0.01 and Δ=0.07. For Δ=0.07, 
the average reward presents an initial period where it increases and presents fluctuations. This initial period 
has different durations depending on the value of Δt but, it does not take longer than 20·104 training steps 
in any of the studied cases. After this initial period, the value of average reward stabilises and the fluctuations 
decrease drastically, presenting a smooth average reward during training. Instead, when using Δ=0.01, the 
duration of the initial period until the average reward stabilises is much longer, and the fluctuations remain 
high, presenting some peaks. These differences between the training for Δ=0.01 and Δ=0.07 can be explained 
by the fact that in the case of Δ=0.01, the updates of the resource quota αt(k,n) are performed in small steps, 
which make more difficult the process of learning, since the actions performed at each time step have a low 
impact on the next state and the obtained reward. Consequently, the agents need a larger number of time 
steps to learn how to behave in the different states and, in some cases, the learning does not stabilise (e.g. 
for Δ=0.01 and Δt=15min, where the average reward does not increase and the fluctuations remain high 
because only increasing Δ=0.01 every Δt=15min does not allow adapting to the offered loads and leads to 
poor training performance). 

Table 3-10 depicts the aggregate reward of the two tenants corresponding to the average of the results 
obtained from the evaluations done between 50·104 and 100·104 training steps. It is observed that, in general, 
better reward is obtained for lower values of Δt. Then, in relation to the action step size, the highest average 
reward is obtained approximately for Δ=0.03 for all the time step durations. Results also show that, for values 
of Δ higher than 0.03, the average reward tends to decrease when increasing Δ. Looking jointly at the results 
of Figure 3.33, Figure 3.34 and Table 3-10 it is observed that a trade-off exists when selecting the value of Δ: 
a higher reward is generally achieved for low values of Δ but at the cost of higher fluctuations during the 
training process and longer training duration. Based on the obtained results, it is concluded that the selection 
of the Δ and Δt values has a clear impact on the training evolution of the policies and an adequate selection 
of these values is fundamental for ensuring an accurate learning process. 

Table 3-10. Average Reward for Different Configurations  

Action Step (∆) 
Aggregate Reward (R1+R2) 

∆t=1min ∆t=3min ∆t=5min ∆t=15min 
0.01 1.91 1.88 1.83 1.73 
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0.03 1.91 1.90 1.90 1.85 
0.05 1.90 1.90 1.88 1.85 
0.07 1.88 1.88 1.86 1.84 
0.09 1.86 1.85 1.85 1.83 

Table 3-11. SLA Satisfaction and System Utilization for Different Configurations  

Action 
step 
(∆) 

SLA Satisfaction 
System Utilization (U) 

Tenant 1 (SS1) Tenant 2 (SS2) 
∆t=1
min 

∆t=3
min 

∆t=5
min 

∆t=15
min 

∆t=1
min 

∆t=3
min 

∆t=5
min 

∆t=15
min 

∆t=1
min 

∆t=3
min 

∆t=5
min 

∆t=15
min 

0.01 0.98 0.93 0.93 0.91 0.97 0.95 0.97 0.92 0.88 0.83 0.84 0.76 
0.03 0.98 0.94 0.93 0.93 0.95 0.94 0.96 0.96 0.86 0.84 0.83 0.82 
0.05 0.97 0.97 0.95 0.93 0.95 0.94 0.94 0.95 0.87 0.86 0.85 0.83 
0.07 0.96 0.95 0.96 0.93 0.92 0.92 0.91 0.92 0.85 0.84 0.85 0.82 
0.09 0.95 0.95 0.94 0.94 0.91 0.91 0.89 0.91 0.84 0.83 0.81 0.81 

Table 3-11 presents the performance of the proposed approach in terms of SLA satisfaction of Tenant 1 and 
Tenant 2 (SS1, SS2) and system utilization (U) after evaluating the learnt models with all the considered 
combinations of Δ and Δt values using the offered load patterns of Figure 3.32. For both tenants, the 
proposed approach achieves high SLA satisfaction above 0.9 for almost all the combinations of Δ and Δt. It is 
also observed that the SLA satisfaction tends to decrease when increasing Δ. The reason is that large values 
of Δ reduce the adaptability to the offered load variation. It is also noticed that the maximum SLA satisfaction 
is achieved for different values of Δ depending on the value of Δt and these maximums are different for each 
of the tenants. For instance, for Tenant 1 the best performance in general is achieved for Δt=1 min and the 
maximum reward for this value is reached for Δ=0.01, whereas for Δt=3 min and Δt=5 min the maximum is 
obtained for Δ=0.05 and Δ=0.07, respectively. Instead, the best performance for Tenant 2 is achieved for 
Δ=0.01 for all values of Δt except for Δt=15 min. The differences between the behaviour observed for Tenant 
1 and Tenant 2 suggest that the values of Δ and Δt should be selected according to the traffic behaviour in 
order to obtain the best possible SLA satisfaction.  

Concerning the system utilization, as seen in Table 3-11, the highest value is achieved for Δt=1 min, and the 
lowest one for Δt=15 min, given that in this case resource quotas are updated at lower frequency, which 
leads to a lower adaptability to the dynamics of the traffic demands of the system. Regarding the impact of 
the value of Δ on the average system utilisation, it is once again observed that depending on the value of Δt, 
a different value of Δ maximises the system utilisation. However, the differences in utilisation as a function 
of Δ are in general small and a reduction trend is only observed for values of Δ beyond 0.05. This reveals that 
the selection of Δ and Δt has a greater impact on some performance metrics such as the SLA satisfaction 
than on others such as the average system utilization. 

 Conclusions and future work 

The initial evaluation results of the multi-agent reinforcement learning solution based on DQN for RAN slicing 
in multi-tenant scenarios have led to the following conclusions: 

• In the analysed case studies, the proposed approach allows properly adapting the assigned capacity 
to each tenant to their traffic requirements while achieving high service level agreement satisfaction 
(i.e. SLA satisfaction ratios higher than 0.95) and efficiently using the available capacity in the system 
(i.e. system utilisation values higher than 0.85). 

• The proposed approach has been compared against two reference approaches, namely: 

o Reference 1 that considers a fixed capacity allocation in accordance with the bit rate 
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requirements in the SLA, and thus it provides a strict fulfilment of the SLA at the expense of 
a poor resource utilization.  

o Reference 2 that assumes that the total capacity can be utilised by both tenants, and thus it 
provides a very high resource utilisation but at the expense of a poor SLA fulfilment.  

The comparison has revealed that the proposed approach provides the best trade-off between 
resource utilisation and SLA satisfaction among all the strategies. 

• A sensitivity analysis has been conducted to assess the impact of two important parameters of the 
algorithm, namely the action step ∆, which determines the increase/decrease in the resource quota 
allocation, and the time step duration ∆t, which reflects the periodicity at which the resource quota 
is modified by algorithm. Results indicate that a trade-off exists when selecting the value of the 
action step Δ: in general, higher reward is achieved for low values of Δ but at the cost of higher 
fluctuations during the training process. Then, it has been obtained that Δ=0.03 appears to be an 
adequate choice as it provides the best aggregate reward. Concerning the time step Δt, results show 
that low values in the order of 1min provide the best performance in terms of both SLA satisfaction 
and resource utilisation thanks to a better reaction capability in front of offered load changes. 

Overall, the results presented here reflect a promising behaviour of the proposed DQN-based RAN slicing 
approach. In this respect, some directions have been identified for further assessing the algorithm as work 
for future deliverable D4.3. First, the capability of generalizing the learnt policies will be studied, trying to 
explore to what extent the policy that has been learnt for a given tenant can also be successfully applied for 
another tenant. This would be relevant from a practical perspective as it would simplify the training process. 
Second, the behaviour of the algorithm when adding new tenants in the scenario will be analysed, trying to 
see if the previously learnt policies need to be updated. Last but not least, the operation of the algorithm in 
front of heterogeneous traffic distributions at multi-cell level will also be studied. 

3.4 Optimal network access problem  
As defined in 5G-CLARITY D4.1 [1], optimal network access is a combination of optimal communication 
resources matching and allocation to satisfy diverse requirements from users and services. Requirements in 
terms of QoS (maximum latency and minimal throughput) and network resources optimization. The problem 
combines two NP problems, many-to-many matching and bin-packing that make hard to deal in dynamic 
scenario. With the expansion of 5G and B5G networks, multi-WAT will be integrated to support complex and 
heterogenous network and services scenarios, with high user mobility and very dynamic traffic loads and 
changes in radio conditions. To deal with this issue, UEs will need to predict in advance consequent network 
states with changes in the radio conditions and choose the optimal and/or the intelligent access network 
policies to match and optimize resources while preserving the predicted QoS requirements. In this section 
we extend the introduction presented in 5G-CLARITY D4.1 [1] by formulating the optimal network access 
problem first as linear formulation followed by the design of our Deep Reinforcement Learning algorithm 
and initial experiments design and benchmarking. The complete and final model, results and conclusion will 
be included in 5G-CLARITY D4.3. 

 Problem statement and formulation 

The Optimal Access Network Problem input are the Multi WAT infrastructure and QoS of service requests 
provided by UE telemetry and RAN telemetry (Section 2.2).  In this sub section we present the problem 
formulation starting with the input parameters and decision variables and finishing with the linear 
formulation of the objective functions and key constraints. 
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 Multi-WAT Infrastructure  

• 𝐺𝐺 = (𝑈𝑈,𝛤𝛤,𝛬𝛬):  graph representing the multi-RAT/WAT access infrastructure where 𝑈𝑈 Is the set of 
active User Equipment (UE) 𝑢𝑢 with multi-RAT/WAT capability,  𝛤𝛤  is the set of access nodes 𝛾𝛾  Wi-Fi, 
Li-Fi, 4G, and 5G. And 𝛬𝛬   is the set of all wireless or radio channels/resources 𝜆𝜆  available grouped 
by access nodes 𝛾𝛾 i.e., 𝛬𝛬 =  �𝛬𝛬 ∪ 𝛬𝛬𝛾𝛾� ∀  𝛾𝛾 ∈ 𝛤𝛤. 

• 𝑊𝑊  is the set of levels of signal-to-interference-plus-noise ratio (SINR)  𝑤𝑤 dB recorded by the UE 
telemetry from different network states. 

• 𝐶𝐶  is the of 𝑏𝑏𝛾𝛾𝜆𝜆  maximum number 𝜆𝜆 channel/frequency/PRB available in an access node 𝛾𝛾 ∈ 𝛤𝛤 

• 𝛥𝛥    is the set of 𝑑𝑑𝛾𝛾𝜆𝜆  minimum latency achieved by each 𝜆𝜆 channel/frequency/PRB resource in 𝑚𝑚𝑚𝑚, 
associated to an access node 𝛾𝛾 ∈ 𝛤𝛤. 

• 𝑀𝑀    is the set of 𝑚𝑚𝑢𝑢 multi-RAT/WAT capability in number of ports by each UE 𝑢𝑢 ∈ 𝑈𝑈. 

• 𝑁𝑁  is the set of coefficients for spectrum efficiency 𝑛𝑛𝑤𝑤
𝛾𝛾  of access node 𝛾𝛾  for each SINR level 𝑤𝑤 

recorded by the telemetry. 0 indicates non transmission capacity, and 1 corresponds to 100% of 
theoretical throughput. This coefficient is related to spectrum efficiency of each WAT technology as 
well as the modulation coding scheme. 

 Service Requests 

• 𝑆𝑆 is set of services 𝑠𝑠 accessed by UEs. 

• 𝐵𝐵 is the set of 𝛽𝛽𝑠𝑠 minimum throughput in bits per second required by the service 𝑠𝑠. 

• 𝐿𝐿 is the set 𝛿𝛿𝑠𝑠 of maximum latency in 𝑛𝑛𝑛𝑛 tolerated by the service 𝑠𝑠. 

• 𝑇𝑇 is the set of t time slots or network states measured by the UE telemetry. 

 Objective function 

For a private network, like a factory, the owner of the factory should aim to max the throughput while the 
QoS of specific applications are satisfied, which should be the objective of our algorithm. (QoS limitation on 
bandwidth, packet average time delay, packet loss rate). In our model, a set of policy based on the 
minimization of the total QoS violation is defined with the equation 

min� � � � � �
𝑤𝑤∈𝑊𝑊𝜏𝜏∈𝑇𝑇𝑠𝑠∈𝑆𝑆𝛾𝛾∈𝛤𝛤𝜆𝜆∈𝛬𝛬𝑢𝑢∈𝑈𝑈

𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏  

When:  𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏  = 1, the policy determines that UE 𝑢𝑢 must connect to service 𝑠𝑠 by using the wireless or radio 

resource 𝜆𝜆 of the access node 𝛾𝛾, during slot time or predicted network state t in case of level of SINR 𝑤𝑤, to 
enforce the best QoS possible. 0 otherwise. 

After the model is executed the UE 𝑢𝑢, will receive a 𝑃𝑃�𝑢𝑢 set of 𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝑡𝑡  = 1 obtained, considering one or many 

services 𝑠𝑠  with different QoS requests, in all states t in all SINR levels scenarios reported  𝑤𝑤  by the UE 
telemetric as historical data.  

 QoS constraint 

The QoS constraints determines de minimum bandwidth and latency supported by the service scheduled. 
Two constraints are used to enforce the QoS the minimal bandwidth constraint and the maximum latency 
tolerated. The maximum bandwidth constraint is  
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� � � 𝑛𝑛𝑤𝑤
𝛾𝛾

𝑤𝑤∈𝑊𝑊𝛾𝛾∈𝛤𝛤𝜆𝜆∈𝛬𝛬

𝑏𝑏𝛾𝛾𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 ≥ 𝛽𝛽𝑠𝑠𝜏𝜏∀𝑢𝑢 ∈ 𝑈𝑈, 𝑠𝑠 ∈ 𝑆𝑆, 𝜏𝜏 ∈ 𝑇𝑇, �𝑏𝑏𝛾𝛾𝜆𝜆,𝛽𝛽𝑠𝑠𝜏𝜏 ∈ 𝐵𝐵�  

This equation determines the minimum throughput in bits per second  𝛽𝛽𝑠𝑠𝜏𝜏 required by the service s, active 
or measured at time slot  𝜏𝜏. In which,  𝑏𝑏𝛾𝛾𝜆𝜆  is the maximum bandwidth supported by the channel and access 
node multiply by a coefficient of signal degradation 𝑛𝑛𝑤𝑤

𝛾𝛾  based on the wireless technology, MCS, and 
frequency used on each level of signal quality level SINR in dB. 

The maximum latency tolerated is 

� � � 𝜖𝜖𝑤𝑤
𝛾𝛾

𝑤𝑤∈𝑊𝑊𝛾𝛾∈𝛤𝛤𝜆𝜆∈𝛬𝛬

𝑑𝑑𝛾𝛾𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 ≤ 𝛿𝛿𝑠𝑠𝜏𝜏∀𝑢𝑢 ∈ 𝑈𝑈, 𝑠𝑠 ∈ 𝑆𝑆, 𝜏𝜏 ∈ 𝑇𝑇, �𝑑𝑑𝛾𝛾𝜆𝜆,𝛿𝛿𝑠𝑠𝜏𝜏 ∈ 𝛥𝛥�  

This equation determines the maximum delay 𝛿𝛿𝑠𝑠𝜏𝜏 tolerated by service s in the given slot time 𝜏𝜏. In which the  
𝑑𝑑𝛾𝛾𝜆𝜆 is the end-to-end latency obtained by a reference point used in a specific channel and access node in the 
reach of the UE. Similar previous equation the 𝜖𝜖𝑤𝑤

𝛾𝛾  is a coefficient of delay added by the signal quality or SINR 
which indicates the delay added by packet drop or retransmissions. 

 Multi-Connectivity constraints 

Multi-connectivity constraint implements the multi-WAT aggregation in the UE (e.g., MPTCP) the following 
equation determines the maximum aggregation or WAT ports or channels 𝑛𝑛𝑢𝑢 supported the UE u.  

� � � 𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏

𝑤𝑤∈𝑊𝑊𝛾𝛾∈𝛤𝛤𝜆𝜆∈𝛬𝛬

≤ 𝑛𝑛𝑢𝑢 ∀ 𝑢𝑢 ∈ 𝑈𝑈,𝑤𝑤 ∈ 𝑊𝑊, 𝑠𝑠 ∈ 𝑆𝑆, 𝜏𝜏 ∈ 𝑇𝑇 

The following equation enables de multi-connectivity traffic distribution bounded by the maximum 
aggregation supported by the UE. 

� � � {
𝑤𝑤∈𝑊𝑊𝛾𝛾∈𝛤𝛤𝜆𝜆∈𝛬𝛬

𝑏𝑏𝛬𝛬𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 + 0.5𝑏𝑏𝛾𝛾𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠

𝑤𝑤, 𝜏𝜏 + {𝑏𝑏𝛾𝛾𝜆𝜆/𝑛𝑛𝑢𝑢}𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 } ≥ 𝛽𝛽𝑠𝑠𝜏𝜏  ∀ 𝑢𝑢 ∈ 𝑈𝑈, 𝑠𝑠 ∈ 𝑆𝑆, 𝜏𝜏 ∈ 𝑇𝑇 

 
 

 WAT channel constraint 

This equation enables de WAT channel capacity of each access node considering the capacity for channel 
aggregation and sharing if allowed (e.g., Wi-Fi). 

� {
𝑠𝑠∈𝑆𝑆

𝑏𝑏𝛾𝛾𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 + 0.5𝑏𝑏𝛾𝛾𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠

𝑤𝑤, 𝜏𝜏 + {𝑏𝑏𝛾𝛾𝜆𝜆/𝑛𝑛𝑢𝑢}𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 } ≤ 𝑐𝑐𝜆𝜆

𝛾𝛾   ∀ 𝑢𝑢 ∈ 𝑈𝑈, 𝜆𝜆 ∈ 𝛬𝛬, 𝛾𝛾 ∈ 𝛤𝛤,𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝑇𝑇      
 

 

 Access network policy assignment constraint 

Finally, the following two equations ensure the assignment of policy of each services request on each UE u 
based on different levels of SINR w in all measured states and channels. 

� � �  
𝑤𝑤∈𝑊𝑊𝛾𝛾∈𝛤𝛤𝜆𝜆∈𝛬𝛬

𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 ≥ 0 ∀ 𝑢𝑢 ∈ 𝑈𝑈, 𝑠𝑠 ∈ 𝑆𝑆,𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝑇𝑇  

� � �  
𝑤𝑤∈𝑊𝑊𝛾𝛾∈𝛤𝛤𝜆𝜆∈𝛬𝛬

𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 ≤ 1∀ 𝑢𝑢 ∈ 𝑈𝑈, 𝑠𝑠 ∈ 𝑆𝑆,𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝑇𝑇  

 Proposed Solution and Initial Implementation 

After defining 5G-CLARITY D4.1 and formulate Optimal Access Network Problem in Section 3.4.1, in this 
subsection we introduce the architecture and flows of our proposed solution of our initial implementation 
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followed by preliminary tests and input parameters obtained.  

 Architectures and flows 

The model described above can be solved as Mixed-Interfere Linear Programming (MILP) only for static and 
small scenarios as a result we design an artificial intelligence (AI) based algorithm and architecture to solve 
the optimal access network problem in dynamic scenario. Our model is designed for three types of 
architectures: 

a) User centric: User Equipment (UE) monitors the APs state and takes its connection decisions based on 
threshold performance parameters, and other WAT/RATs characteristics.  The mayor challenge for 
heuristics or AI based models is the lack of knowledge of the whole network and limited capacity of the 
UE to host and process large volume of data and power. 

b) RAN-Assisted: An information exchange is done between the access node (WAT/RAT) and the UE to 
decide what access node to connect. It provides broader feedbacks that cannot be measure locally the 
UE. However, still it requires large storage and computing capability in the UE as the user centric 
architecture. 

c) RAN-Controlled: Architecture adopted by 3GPP for addressing dual-connectivity issues with capacity for 
centralized or distributed decision normally taken by one or multiple Radio Access Network (RAN) 
controller/s that oversees various WAT/RAT networks. In this architecture UE does not store or process 
large information, only report periodically performance measurements (e.g., SNR).  The controller 
combines the feedbacks from Multi-WAT/RAT networks through their UEs to build an overall view of the 
network.  

However, at this stage our first model is based on the RAN-controlled architecture with the capability to be 
extended to the other two architectures to be more adaptable. In addition, the RAN-controlled architecture 
match better with the 5G-CLARITY Infrastructure stratum and Intelligent stratum. The proposed AI tool is 
designed to be deployed on the 5G-CLARITY AI Engine as introduced in the Figure 3.38.  

Figure 3.35 (left side) summarizes the architecture of the solution as well-as its initial implementation in 
simulated environment. In this example, four access nodes (ANs) are connected to a node emulating 5G-
CLARITY RAN cluster, then the AI engine or solution is deployed with the data lake and the telemetric control 
centre in a node emulating 5G-CLARITY edge node. The service accessed in this example is hosted also in the 
node emulating the edge cluster. 

 

 
Figure 3.35. Simulation architecture overview and main flow 
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Figure 3.38 (right side) describes the main flows of our framework, connected to the right side by references 
(a)-(c). Figure 3.38(a) presents the first step in which the access nodes send regular updates of network status  
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈1. .4 �𝐴𝐴[𝛾𝛾],𝑊𝑊[𝑤𝑤],  𝑇𝑇[𝜏𝜏],𝑈𝑈[𝑢𝑢],  𝑅𝑅[𝑟𝑟]� the data sent the set A of active ANs (own and neighbors), 
set W of different levels of SINR associated to neighbors ANs and UEs, set of network states  𝑇𝑇 and set of  𝑈𝑈 
UEs connected in each state 𝜏𝜏 and finally, the set of resource 𝑅𝑅 used and available per state of the sender 
AN (e.g., MCS, number of PRBs(5G/4G), and channels from Wi-Fi available). Then the UE send the request 
for access network policy assuming the AI/optimization framework already finished a training process with 
large data set of network states (Figure 3.38(b)).  Finally, the AI engine and optimization model sent a set of 
predicted network states and optimal access network policies covering each state and each UE assuming 2x 
Multi-Connectivity Wi-Fi and LTE or 5GNR. 

 Deep Q Learning Algorithm Model 

To design our approach, we define three main elements based on the problem formulation:  

a) State space defined as (resources available for service)  𝑆̂𝑆 = �𝑓𝑓𝜆𝜆,𝛾𝛾
𝜏𝜏,𝑤𝑤, . . �  ∀  𝜆𝜆 ∈ 𝛬𝛬, 𝛾𝛾 ∈ 𝛤𝛤,𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈

𝑇𝑇  where: 
 

� � {
𝑢𝑢∈𝑈𝑈𝑠𝑠∈𝑆𝑆

𝑏𝑏𝛾𝛾𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 + 0.5𝑏𝑏𝛾𝛾𝜆𝜆𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠

𝑤𝑤, 𝜏𝜏 + {𝑏𝑏𝛾𝛾𝜆𝜆/𝑛𝑛𝑢𝑢}𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠
𝑤𝑤,𝜏𝜏 } − 𝑐𝑐𝜆𝜆

𝛾𝛾 = 𝑓𝑓𝜆𝜆,𝛾𝛾
𝜏𝜏,𝑤𝑤  ∀ 𝜆𝜆 ∈ 𝛬𝛬, 𝛾𝛾 ∈ 𝛤𝛤,𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝑇𝑇 

 
  

b) Action space is defined by 𝐴̂𝐴 = �𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠..
𝑤𝑤,𝜏𝜏 �   ∀  𝑢𝑢 ∈ 𝑈𝑈, 𝑠𝑠 ∈ 𝑆𝑆,𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝑇𝑇      

c) Reward function: for each access node 𝛾𝛾 ∈ 𝛤𝛤 and time slot  𝜏𝜏 ∈ 𝑇𝑇 is: 

𝑅𝑅𝛾𝛾𝜏𝜏 =    � � � �
𝑠𝑠∈𝑆𝑆

 �𝑃𝑃𝑢𝑢,𝜆𝜆,𝛾𝛾,𝑠𝑠..
𝑤𝑤,𝜏𝜏 �

�𝑐𝑐𝜆𝜆
𝛾𝛾 − 𝑓𝑓𝜆𝜆,𝛾𝛾

𝜏𝜏,𝑤𝑤� +  𝛽𝛽𝑠𝑠𝜏𝜏   

�𝑐𝑐𝜆𝜆
𝛾𝛾 − 𝑓𝑓𝜆𝜆,𝛾𝛾

𝜏𝜏,𝑤𝑤�
��

𝑤𝑤∈𝑊𝑊𝑢𝑢∈𝑈𝑈𝜆𝜆∈𝛬𝛬

 ∀  𝛾𝛾 ∈ 𝛤𝛤,  𝜏𝜏 ∈ 𝑇𝑇 
 

The given reward function will provide incentive to the algorithm to allocate all their resources. By using the 
dynamic policy, the proposed AI will solve the dynamic policy for optimal access network in a multi-WAT 
network.  Since the state space is large and dynamic, we design a Deep Q Learning based solution. The 
Pseudo-Code of the algorithm is summarized in Algorithm 1. 

 

 Evaluation methodology and Initial Results 

During this first stage of modelling and designing of our solution we began: (i) a round of test to determine 
appropriated inputs and parameters for our model; (ii) an implementation and test of an experimental 
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environment using NS3 to setup large scale simulations; (iii) solved as MILP as benchmark to compare and 
tune parts of our proposed DRL solution.   

 Input data and parameters 

We performed an initial evaluation considering LTE/5GNR radio and three Wi-Fi standards. The LTE/5GNR 
considered uses 50 MHz of bandwidth and 275 RBs (aka PRBs) per channel. We use the average PRB 
throughput in bits per second coding scheme or Modulation Coding Scheme (MCS) measured per SINR 
(Figure 3.36). The given parameters measured by UE telemetry obtained an average between 0.2 and 1.45 
Mbps per RB (or between 55 Mbps to a maximum of 400 Mbps). Figure 3.36 (b) also presents a pattern of 
spectrum efficiency and sensibility to SINR levels based on the MCS.     

 

 
(a) 

 

(b) 

Figure 3.36. SINR w vs RB throughput per MCS 
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Table 3-12. Maximum and Minimum Throughput per SINR level Wi-Fi, LTE/5GNR  

Level Protocol/Code  Wi-Fi 
802.11x 

LTE/5G 
QPSR 

LTE/5G 
16-QAM 

LTE/5G 
64-QAM 

LTE/5G 
256-QAM 

1 Minimum SINR (dB) > 25 > 0 > 20 > 30 > 45 

Minimum average throughput in 
Mbps per channel or resource block 
(RB) = 90% < 

10 < 
50 < 

140 < 

0.180 < 0.650 < 1.18 < 1.45 < 

2 Max SINR (dB) < 25 < 0 < 20 < 30 < 45 

Maximum average throughput in 
Mbps per channel or resource block 
(RB) = < 90% 

< 10 
< 50 
<140 

> 0.180 > 0.650 > 1.18 > 1.40 

Min SINR (dB) 10 < - 5 < 8 < 15 < 20 < 
Minimum average throughput in 
Mbps per channel or resource block 
(RB) = 50% <  

6 < 
20 < 
70 < 

0.090 < 0.300 < 0.600 < 0.800 < 

3 Max SINR (dB) < 10 < -5 < 8 < 15 < 20 
Maximum average throughput in 
Mbps per channel or resource block 
(RB) = < 50% 

< 6 
< 20 
< 70 

< 0.090 < 0.300 < 0.600 < 0.800 

Min SINR (dB) 2 < -8 < 2 < 5 < 8 < 
Maximum average throughput in 
Mbps per channel or resource block 
(RB) = 10% < 

1 < 
4 < 

10 < 

0.020 < 0.080 < 0.10 < 0.15 < 

4 Max SINR (dB) < 2 < -8 < 2 < 5 < 8 

Maximum average throughput in 
Mbps per channel or resource block 
(RB) = < 10%  

< 1 
< 4 

< 10 

< 0.020 < 0.080 < 0.10 < 0.15 

 

We assumed the impact of SINR to the end-to-end latency from the UE to the application considering 
different types of services or QoS requirements we confirm the latency proportionality to the SINR level 
given the increase of number of packet retransmission5. Table 3-12 present the parameters used during the 
first simulations.  

 Emulation Model in NS3  

The emulation of real multi-WAT technology is in process to be implemented in NS3 network simulator. The 
network structure of our initial test is shown on Figure 3.37(a).  Then Figure 3.40(b) presents an illustrative 
example of simulation with our model emulating three UEs, three Wi-Fi ANs with 3 channels each and one 
AN LTE/5GNR. In this example we have four types of services, voice, video, web, and background traffic 
generated on each UE and AN. The Figure 3.37(b) presents, the data including delay, jitter, throughput, drop 
rate of channel in Wi-Fi and LTE, collected in the emulation.   

 
5 Calculation were performed using MATLAB and real signal proceessing data collected by the UE telemetry 
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(a)  

     
(b) 

Figure 3.37. (a) NS3 Emulation. (b) Monitoring data for further experiment for Wi-Fi (left) and LTE (right). 
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 Preliminary results 

To complete the final design of our AI model and architecture we create an initial benchmarking by solving 
the optimal access network problem with MILP solver and with an early version of the Q-learning non-
gradient training function. After the initial optimization, a data set is generated using random generated 
values emulating the UE telemetry parameters. Figure 3.38 (a) presents a snapshot of the initial results 
presenting a prediction of next two network states t=2, and t=3 describing a movement from AN 1 to AN 4. 
The model also predicted the optimal access network policy for each states considering other UEs and the 
traffics and usage of the infrastructure (Figure 3.38(b)(c)). The scalability and the practical implementation 
of solutions in networks on production is the expected benefits of the DRL model in design.  

 

 
Figure 3.38. Example of results obtained. 

 
Figure 3.39. Successful Predicted/Calculated Optimal Network States on between 1 to 100 UEs 
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The success of prediction where measure based on the obtained results from the MILP and an early 
implementation of our DRL model using the reward and actions functions introduced.  The MILP obtained 
the accurate number of predictions, and a brute force heuristic solution miss predicts near 20% and by 
deploying the proposed DRL functions it tends to reduce to 5%. 

3.5 Indoor ranging with NLoS awareness  

 Algorithm design 

 Introduction 

In 5G-CLARITY D4.1 [1] we described the details of ML-based Non-Line-of-Sight (NLoS) identification and 
NLoS-aware ranging. In particular, the Support Vector Machine (SVM) classification/regression method 
features were presented, its advantages and disadvantages were discussed, and its potential for NLoS-aware 
ranging was revealed.  

In this deliverable we introduce a new approach based on DNNs, which tackles the disadvantages of SVM, 
i.e. increase of computational complexity with the growth of training set. In other words, SVM acts as a 
baseline to DNN-based NLoS identification and ranging. In what follows, we firstly describe the 
characteristics of DNN-based NLoS identification and ranging. Subsequently, the performance of SVM and 
DNN approaches are compared by means of an extensive simulation and measurement campaign. 

 DNN for NLoS-aware Ranging 

DNNs have shown superb performance in a wide variety of classification problems, such as image 
classification, handwriting classification, etc. In the context of NLoS identification, their potential 
performance has already been revealed in [49]. Furthermore, recent works in Fingerprinting (FP) localization, 
such as [50], suggest that DNNs show great potential to increase the precision of localization/ranging, 
especially in indoor environments.  

Given that, we leverage three DNN blocks, namely NLoS identifier, NLoS ranging, and LoS ranging, to design 
an NLoS-aware ranging algorithm for high precision indoor ranging (shown in Figure 3.40). It receives the 
Channel State Information (CSI) measurements as input, applies Fast Fourier Transform (FFT) to transform it 
into frequency domain, and feeds the output of the FFT block to the DNNs. Depending on the outcome of 
the NLoS-identifier block, one of the arms is activated to perform ranging. All of the DNN blocks are trained 
offline and able to immediately return a prediction/estimation.  

 
Figure 3.40. The end-to-end DNN-based model for NLoS-aware ranging. The vector [ONLoS, OLoS] can only take the 

value [0, 1] or [1, 0] to assure that only one of the arms in the diagram carries out the ranging.  
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In the sequel, we discuss the characteristics of each block as well as their relation among each other. 

3.5.1.2.1 NLoS Identifier 

We employ the DNN in Figure 3.41 to perform the NLoS identification, whose purpose is to distinguish 
between LoS and NLoS links. The network comprises an input layer, two hidden layers, and an output layer. 
Choosing the number of hidden layers and their respective neurons is always a challenging task and requires 
a great deal of intuition. Nevertheless, as a rule of thumb, for a classification problem, it’s suggested that the 
number of neurons is selected in the interval between [N_input, N_class] [51]. The selection of the number 
of hidden layers is carried out by trial-and-error, where we did not observe any significant improvement for 
more than two layers. Moreover, the network’s input for training is the normalized magnitude of the Channel 
State Information (CSI) vectors collected under two scenarios, i.e., LoS and NLoS, in multiple positions.  

3.5.1.2.2 Ranging 

To have a robust high precision ranging algorithm, we draw on the fingerprinting approach [50]. In particular, 
ranging is treated as a classification problem where we aim to train a DNN-based fingerprint classifier that is 
then utilized to classify a collected CSI into one of the fingerprints, thereby estimating its corresponding 
distance from the AP.  

To this end, we train two structurally equal models, one for the LoS scenario and one for the NLoS, following 
the model shown in. The former is trained using only the LoS CSI data while the latter is trained by means of 
NLoS CSIs. Both models have similar architectures, as shown in Figure 3.41. Furthermore, a Weighted 
Arithmetic Average (WAA) unit is clipped to the output of each ranging model to compute the final ranging 
estimation.  

We note that the output of the network is a vector indicating the probability of each class into which the 
input CSI may be classified. The NLoS identifier and ranging DNN models can then be combined in the manner 
depicted in Figure 3.40, where we first feed a collected CSI to the NLoS identifier network and, subsequently, 
based on its outcome, i.e., LoS or NLoS, one of the two ranging models is picked to conduct the ranging.   

 Evaluation methodology 

In this section we present the principles of evaluation for our baseline model, i.e., the model based on SVM 
described in D4.1 [1], and those considered for the DNN-based model proposed in this deliverable. 

 

 
Figure 3.41. Architecture of the DNN used for NLoS-aware ranging. 
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Table 3-13. Features Extracted to Feed to SVC/SVR 

Total energy 𝜀𝜀 = ∫ |𝑟𝑟(𝑛𝑛)|2𝑑𝑑𝑑𝑑 Maximum amplitude 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = max
t

|𝑟𝑟(𝑡𝑡)| 

Mean excess delay 𝜏𝜏𝑚𝑚 = ∫ 𝑡𝑡
|𝑟𝑟(𝑡𝑡)|2

𝜀𝜀
𝑑𝑑𝑑𝑑 RMS delay 

𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟

= ∫ (𝑡𝑡 − 𝜏𝜏𝑚𝑚)2
|𝑟𝑟(𝑡𝑡)|2

𝜀𝜀
𝑑𝑑𝑑𝑑 

Mean 𝜇𝜇 =
1
𝑇𝑇
∫ |𝑟𝑟(𝑡𝑡)|𝑑𝑑𝑑𝑑 Variance 𝜎𝜎2 =

1
𝑇𝑇
∫ (|𝑟𝑟(𝑡𝑡)| − 𝜇𝜇)2𝑑𝑑𝑑𝑑 

Skewness 𝜅𝜅 =  
1
𝜎𝜎3𝑇𝑇

∫ (|𝑟𝑟(𝑡𝑡)| − 𝜇𝜇)3𝑑𝑑𝑑𝑑 Kurtosis 𝜅𝜅 =  
1
𝜎𝜎4𝑇𝑇

∫ (|𝑟𝑟(𝑡𝑡)|

− 𝜇𝜇)4𝑑𝑑𝑑𝑑 
 

 SVM evaluation methodology 

The first step towards running the SVM-Classifier (SVC) is training. To this end, the CSI data is pre-processed 
to, for example, extract the relevant features. These relevant features, which have proved to be essential 
according to [52], are as shown in Table 3-13.  

Once the desired features are extracted, we need to obtain the weights of SVM, the kernel type, and its 
parameters. A kernel is a non-linear transformation applied to the features to map them into high 
dimensional spaces and, consequently, rendering them more separable. For the purpose of this work, we 
choose Radial Basis Function (RBF) with parameters C and 𝛾𝛾. The C parameter trades off correct classification 
of training examples against maximization of the decision function’s margin. The 𝛾𝛾 parameter defines how 
far the influence of a single training example reaches. An optimization technique such as grid search can then 
be employed to find the optimal values for the aforementioned parameters. All these can be readily done 
using sklearn python package without much human intervention. 

For the ranging problem, we draw on the SVM Regressor (SVR), as initially referred to in D4.1 [1]. The same 
steps taken to pre-process the data and to select the suitable kernel are repeated for the SVRs as well. In 
particular, we train two models, one only trained by LoS CSI data while the other is trained only using NLoS 
CSI data. Furthermore, based on the output of SVC, one of the SVRs is selected to perform ranging. The 
general structure resembles that of Figure 3.41. However, the DNNs are replaced by SVC and SVRs. Moreover, 
instead of the FFT of CSI, we use the time-domain CSI samples. This is, in particular, due to the fact that 
manually computing the features relevant for NLoS-identification and FP, i.e., those mentioned in Table 3-13, 
is not possible as they are time-domain features.   

 DNN evaluation methodology 

The DNN-based NLoS-aware ranging employs two DNN models, one for NLoS identification and one for 
ranging. Note that, in the latter, we train the model twice and save two sets of weights, one of which is then 
chosen depending on the channel condition, i.e., LoS or NLoS. We use the Keras framework of Python to 
implement the neural networks. Table 3-14 describes the detailed description of hyperparameters for each 
network.  

Table 3-14. Hyperparameters of DNNs for NLoS-Aware Ranging. 

 

Network 

 

# of inputs 

# of hidden 
layers        

(# of 
neurons) 

# of outputs 
(function 

type) 

 

Optimizer 
(parameters) 

 

# of 
epochs 

 

batch 
size 

 

Cost 
function 
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NLoS-
identifier 

 

50 

 

2 

(34, 18) 

 

2 

(softmax) 

Adam (lr=0.001, 
beta_1=0.9, 

beta_2=0.999) 

 

10 

 

16 
Binary cross-

entropy 

 

Ranging 

 

50 

 

2  

(62, 74) 

 

86 

(softmax) 

Adam (lr=0.001, 
beta_1=0.9, 

beta_2=0.999) 

 

25 

 

16 

Categorical 
cross-

entropy 

 Simulation scenario and CSI collection 

To evaluate the performance of the proposed ML algorithm, we consider the scenario in Figure 3.41. The 
CSIs are collected under LoS and NLoS conditions for the 86 red fingerprints in a big office hall of 198 m2. An 
SDR N310 is programmed to periodically propagate m-sequences in the environment. At the receiver side, 
another SDR mounted on a trolley records the sequences at each fingerprint. By pre-processing the received 
signal at the receiver, we can extract the desired CSIs. Further parameters of the measurement campaign 
can be found in Table 3-15. 

Given this setup, we collect 100 CSIs at each fingerprint or, alternatively, 8600 channel realizations for each 
scenario, i.e. LoS and NLoS. The NLoS scenario is created by putting a whiteboard in the middle of the 
transmitter and the receiver to block the direct path. Another crucial remark to make is that, while we can 
use the absolute value of the FFT of the CSIs as input to the DNNs, we need to extract the feature matrix X 
from the CSIs to be able to feed them to the SVM/SVR. A detailed description of these features has already 
been provided in the previous subsections.  

 

Table 3-15. Parameters of CSI measurement campaign. 

Frequency Bandwidth # of TX/RX 
antennas 

# measurments per 
fingerprint  

Resolution of 
fingerprinting 

Height of 
TX/RX 

5.2 GHz 20 MHz 1 100 1 m 2.5 m/1.0 m 
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Figure 3.42. Layout of the office hall. 
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Finally, the collected CSI set is split into two sets, a training set comprising 80% of the data and a test set 
consisting of 20% of the CSIs. For the SVM model, both sets are pre-processed to extract the features, while 
for the DNN model, we only perform FFT on the sets before we feed them to the network. 

It must be noted that a more reliable test-set would be obtained by conducting measurements at random 
positions in the environment, meaning that the results acquired by this dataset are considered to be 
optimistic. More realistic results will be provided in the next WP4 release by conducting an extensive 
measurement campaign to include random positions in the dataset. Nevertheless, the current dataset 
suffices to show to the superior performance of the DNN-based algorithm and the importance of NLoS-
awareness when performing ranging.  

 Evaluation results and discussion  

We evaluate the performance of the proposed algorithms in terms of LoS/NLoS prediction accuracy and 
Cumulative Density Function (CDF) of the ranging error. To evaluate the performance of SVM-based 
algorithm, once the models are trained, the feature vector corresponding to each CSI in the test set is fed 
into the SVC, where the channel condition (LoS and NLoS) is predicted. Subsequently, based on the predicted 
value, one of the SVRs is chosen to perform ranging. The same procedure is repeated for the DNN-based 
algorithm, with the inputs being the magnitude of the FFT of the CSIs. 

Figure 3.43 shows the LoS/NLoS false alarm probabilities and the prediction accuracy of the proposed 
algorithms. The LoS/NLoS false alarm probability is calculated by 

𝑃𝑃𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑁𝑁𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿
𝑁𝑁𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿+𝑁𝑁𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿+𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

,   𝑃𝑃𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿+𝑁𝑁𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿+𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

, 

where 𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁 stand for “number of true detected” and “number of false detected”, respectively. The 
accuracy can be then computed by 𝑃𝑃𝑎𝑎𝑎𝑎𝑐𝑐 = 𝑃𝑃𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 

As can be seen from Figure 3.43, the DNN-based algorithm outperforms the SVM-based by a significant 
margin. The reasons of that are twofold. On the one hand, DNN can efficiently extract the relevant features 
without human intervention, which can often be flawed due to the lack of profound understanding of the 
phenomenon in question. In other words, the DNNs perform a more systematic feature engineering, thereby 
extracting the most relevant features and enhancing the accuracy of classification. On the other hand, DNNs 
possess a remarkable capability to implement the non-linear functions, which, from the classification point 
of view, enables the classifier to define almost any decision boundary to separate the classes.    

Figure 3.44 presents the CDF of the ranging error for SVM- and DNN-based NLoS aware ranging algorithms. 
As can be seen, the DNN-based algorithm outperforms the SVM-based algorithm by a large margin, mainly 
due to the following reasons. 

 
Figure 3.43. Performance of SVM and DNN -based NLoS identifier. 
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Figure 3.44. Performance comparison of NLoS-aware ranging using DNN-based FP and SVM. 

On the one hand, NLoS identifier predicts the channel condition with a higher accuracy, whereby preventing 
a LoS/NLoS CSI to be fed to the SVR (or DNN) corresponding to the NLoS/LoS. On the other hand, the 
precision of ranging conducted by DNN is higher than that of SVR as it has intrinsically more capabilities to 
extract the particularly suitable features for ranging. On the contrary, the features for the SVM model need 
to be handpicked, which often leads to the deterioration in performance when compared to DNN models. 

3.6 Resource partitioning in a multi-technology RAN  

 Initial implementation 

This ML algorithm shares some similarities with the multi-tenancy use case exposed in Section 3.3. In both 
cases, the ML algorithm uses a DQN approach to allocate radio resources to each slice. However, there are 
also significant differences causing the resource allocation problem to be addressed in a different way. In 
particular, the proposed algorithm in this section focuses on the resource provisioning problem of an 
industrial network scenario, where the following distinctions can be drawn: 

• Overall, in industrial scenarios only one operator prevails. The industrial network in this problem can 
be considered as a standalone NPN managed by a unique private operator. 

• The radio access network of the industrial scenario in this problem is composed of different radio 
access technologies (i.e., 5GNR and Wi-Fi), which will be leveraged to satisfy the variety of traffic 
demands of different nature (e.g., wide variety of services with different QoS requirements). 

• As pointed out previously, the services offered in an industrial network are very different in terms of 
requisites. In this problem we face with two of the most representative types of 5G services: URLLC 
services are considered for the industrial controllers deployed along the production lines of the 
factory and eMBB services are requested by the factory workers for applications such as video 
streaming and augmented reality. 

 System model 

Considering a two-tier Heterogeneous Network consisting of a set B = BG ∪ BW of cells, where BG is the set of 
5GNR cells and BW is the set of Wi-Fi cells, all managed by a given network operator. On top of this 
infrastructure, multiple services can be provided on separate 5G-CLARITY slices. Each service is provided on 
a separate 5G-CLARITY slice to guarantee its specific requirements. Let C be the set of 5G-CLARITY slices that 
are deployed in the network. There are two kind of services that can be delivered: eMBB and URLLC. For 
example, there can be one URLLC service and two eMBB services that are provided on three different 5G-
CLARITY slices. Due to the technology limitations, URLLC services can only be served on 5GNR cells. On the 
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other hand, eMBB services can be served on 5GNR, Wi-Fi, or simultaneously through 5GNR and Wi-Fi cells, 
leveraging the AT3S functionality that is supported by the 5G-CLARITY system. The eMBB traffic offloading 
to Wi-Fi can be maximized to achieve better system performance. To that end, we assume ideal response of 
the AT3S function for updating the routing factor (please, for more information about the AT3S functionality 
in 5G-CLARITY D3.2 [14]).  

The service demand of each 5G-CLARITY slice is non-uniformly distributed over the considered area, where 
a set U of user equipment (UEs), both static and mobile, exist in the scenario. Let us represent the subset of 
UEs belonging to slice c using the variable Uc, c ∈ C. Each UE of an eMBB service demands a capacity DeMBB, 
while each UE of a URLLC service demands a capacity DURLLC and a delay in the access network less than τmax. 

The UEs of a slice should be provided with enough resources to satisfy their service requirements 
(throughput, latency). To that end, we use the concept of 5G-CLARITY quota, which enables isolation of radio 
resources between the different 5G-CLARITY slices, to guarantee service performance. Let ξc,b be the quota 
for slice c in cell b. In 5GNR cells, the 5G-CLARITY quota corresponds to the 5G-CLARITY wireless maximum 
quota, which defines the maximum resource usage quota for a given slice. PRBs can be exclusively allocated 
to one slice (i.e., no other slice can use them) or shared between slices. We adopt the shared resources 
approach as it allows to maximize resource usage in the system. For shared resources, PRBs are allocated on 
demand, i.e., when the slice needs to use them. In addition, a fraction of these resources can be guaranteed 
to one slice in case of resource scarcity (prioritized resources). This quota is referred to as the 5G-CLARITY 
wireless minimum quota. More details on 5G-CLARITY quotas can be found in Section 2.1.1.1. 

The 5G-CLARITY wireless maximum quota can be adapted to handle the varying environmental conditions 
and user traffic dynamics. The lower bound for this quota is given by the quota for prioritized resources, or 
5G-CLARITY wireless minimum quota. In this case, the slice would not use resources other than the 
guaranteed fraction of PRBs. On the other side, the upper bound is the system bandwidth, so that the slice 
could use as many free PRBs as possible. 

In Wi-Fi cells, the quota is given by the airtime (i.e., the wireless transmission time usage). Since Wi-Fi does 
not provide QoS guarantees, a resource control technique is required to enforce airtime fraction for 
competing virtual networks, or slices (see section 3 of D3.2 [14] where an example of such technique is 
provided). The Wi-Fi APs are then utilized to offload traffic from 5GNR cells, especially when there are 
services such as URLLC that can only be served through 5GNR.  

 Proposed method 

The allocation of the optimal amount of resources to 5G-CLARITY slices in an industrial network is essential 
to ensure effective network performance and efficient use of radio resources. The proposed ML algorithm 
addresses the radio resource allocation problem at high-time scales (i.e., non-real time, specifically in the 
order of minutes) as part of the network planning activities. At this level, the allocated resources are defined 
in terms of quotas and the main network dynamics are due to user behaviour and mobility patterns, which 
result in spatio-temporal variations of the traffic demand. To cope with this traffic dynamics, the ML 
algorithm redistributes the available radio resources by adapting the radio resource quotas and leveraging 
the multi-WAT RAN feature to offload traffic depending on the current network state. For that purpose, the 
algorithm will follow a closed loop operation process, which comprises the monitoring, measurement and 
evaluation of the network traffic and then the optimization of the radio resource provisioning. 

From the design viewpoint, the closed loop automated slice provisioning can be seen as a controller (agent) 
that distributes the resources as a function of the current traffic demands and targeted KPIs. The proposed 
solution is based on a multi-agent distributed approach, where one agent is deployed per 5GNR cell and per 
slice. Specifically, the controller’s design depends on the characteristics of the 5G-CLARITY slice that is 
deployed in the industrial scenario: eMBB or URLLC.  
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Table 3-16. Input Parameters for Both Types of Controllers (URLLC, eMBB). 
Input parameter Controller 

Cell resource utilization (Lb) URLLC, eMBB 
Resource quota (ξc,b) URLLC, eMBB 

Packet Loss Ratio (PLRc,b) URLLC 
Normalized user throughput (µ’c,b = µc,b / DeMBB) eMBB 

 

Table 3-16 shows the controller’s inputs for each kind of controller (URLLC or eMBB). The cell resource 
utilization Lb is defined as the relation between the used PRBs and the total number of PRBs in a cell. The 
Packet Loss Ratio (PLR) is the ratio of the number of lost packets and the number of arriving packets 
considering that a packet is discarded if the packet is not delivered in a time less than τmax. Let PLRmax be the 
maximum PLR that can be allowed for the URLLC service. 

The controller’s output is given by the increase or decrease in the allocated number of PRBs. Let Δq be the 
magnitude of the change in the slice resource quota. 

Regarding the operation, each controller adapts the wireless resource quota of every slice periodically. Let 
Talloc be the time interval over which the calculated quota is valid for resource allocation. The operation of 
the controllers is limited by the following considerations: 

• On the one hand, as stated in the system model, the controller for URLLC can only be applied to 
5GNR cells.  

• On the other hand, the operation of the controller for eMBB in 5GNR cells is influenced by the UEs 
that are also connected to Wi-Fi cells (using the AT3S function) and vice versa.  

The resource quota calculated by the controller should satisfy DeMBB for eMBB traffic or PLRmax for URLLC 
traffic. 

There can be some cases where different controllers in the same cell can take the action of increasing the 
quota to the slices so that the total amount of required resources exceeds the system bandwidth. In order 
to solve this conflict, a super agent that knows the status of the cell will take the responsibility to  determine 
which controllers are allowed to modify the quota. 

Each slice controller in every 5G cell stands for a DQN agent. Each agent derives its policy according to a DQN 
based on RL theory. The DQN is able to combine RL with a class of artificial neural network known as DNN. 
DQN algorithm follows Bellman´s equation, as indicated below: 

Q(s,a) = E �r + γmax
           a'

 Q(s′, a′)|s, a� 

 
Specifically, in DQNs, a neural network is used to approximate the Q-value function. 

At every time step of the operation process, the agent observes a state s from the environment and takes 
an action a. After taking the action, the agent will receive a reward r whose value will depend on whether 
the action is appropriate or not for the observed state. The agent learns to maximize the long-term reward 
as follows: 

𝑅𝑅𝑡𝑡 =  �𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡

𝑇𝑇

𝑡𝑡=0

 

 

where γ represents a constant that discounts future rewards (0 ≤ γ ≤ 1) and T is the total time steps of the 
training process. 
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Table 3-17. Reward function definition. 
Reward (rt) Controller 

𝑟𝑟𝑡𝑡      = 
1 if distance to the required target 

throughput is getting lower URLLC and eMBB 
-1 otherwise 

 

RL (and also DRL) learns what is the best action for a state through exploration and exploitation. That is, 
when the agent explores, it can improve its current knowledge as it gets more information about the 
environment. This results in better rewards in the long run. However, in the exploitation phase, the agent 
chooses an action based on its previous knowledge of the environment, resulting in a higher immediate 
reward. In order to have sufficient initial exploration and higher reward values a balance or trade-off 
between exploration and exploitation would be desired. 

In the following, the state, action and reward of the proposed approach are detailed: 

a) State 

At each time step t, the state st is obtained from the environment. It can be expressed as st = {st(c,b)}, 
where each element st(c,b) represents the state of the slice c in cell b. The state is defined as the 
inputs of the controllers. In particular, for an eMMB agent, the state is defined as st(c,b) = {Lb, ξc,b, 
µ’c,b} and for a URLLC agent, the state is defined as st(c,b) = {Lb, ξc,b, PLRc,b}. 

b) Action 

Once the agent has observed the state, it triggers an action in order to adapt the allocated radio 
resources to the new environment conditions. The action taken at time step t for the slice c in cell b 
is denoted as at(c,b) and it will update the associated resource quota ξc,b by increasing, decreasing or 
maintaining the value determined in the previous step t-1. The action will modify the quota 
progressively in steps of a given size ∆. Thus, three different values are possible to be taken by the 
action, at(s,b) ∈ {Δq , -Δq , 0}, resulting in the modification of the slice quota, as indicated in the 
following expression: ξc,b(t)= ξc,b(t-1) + at(c,b). 

c) Reward 

It is necessary to evaluate the goodness of the action at that is taken by the agent in step t from state 
st. A possible reward function rt that captures the benefit/loss of the taken action is defined in Table 
3-17. 

 Evaluation methodology 

 Description of the scenario 

For the performance evaluation of our proposal, we consider an industrial scenario (e.g., a factory in the 
context of the Industry 4.0), which attempts to represent the BOSCH factory (UC2.1 [53]).  

The physical dimensions of the industrial site service area considered are 100 m x 100 m. A set of wireless 
URLLC and eMBB users (UEs) are deployed in the scenario.  

The UEs considered as URLLC stand for Programmable Logic Controllers (PLCs) in charge of monitor and 
control the industrial processes. We contemplate a total of 224 URLLC UEs distributed in 4 production lines. 
On the other hand, several eMBBs UEs are also located in the scenario. These eMBB users are randomly 
located along the factory premises (e.g., they represent factory workers with smart phones or tablets). 

Moreover, 4 gNBs (transmitting at 3.5 GHz) and 5 Wi-Fi APs (transmitting at 2.4 GHz) are considered to be 
deployed in the scenario. Figure 3.45 shows the described industrial scenario layout considered. 
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Figure 3.45. Industrial scenario layout. 

 Evaluation tools 

The ML model proposed in this section can be seen represented in the framework of 5G-CLARITY in Figure 
3.46. As illustrated in the figure, the solution based on multiple DQN agents resides in the AI Engine, where 
the ML training host and the ML inference host are the two components required for the operation of the 
ML model.  
 

 
Figure 3.46. ML model functionality in 5G-CLARITY architecture. 
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As illustrated in the figure, the solution based on multiple DQN agents resides in the AI Engine, where the 
ML training host and the ML inference host are the two components required for the operation of the ML 
model. Particularly, in the ML training host, the training of this model takes place making use of the telemetry 
data that is available in the AI Engine. During the training process, the ML training host learns the DNN 
parameters (e.g., weights) in order to obtain a good Q-value function approximation that determine the 
action selection policies. 
For the evaluation of the performance of our ML algorithm proposal, a RAN simulator developed in MATLAB 
and analytical performance models will be used as the training environment. 

The simulator follows a snapshot-based model to capture the different realizations of the demand 
distribution in a scenario that resembles a typical industrial floor. More precisely, each snapshot represents 
a random realization of the demand distribution. The different realizations of the traffic demands and 
positions of the mobile eMBB UEs ensure reliable statistical significance analysis. 

On the one hand, the computation of radio features related with 5G technology in the simulator, such as 
users´ SINR, spectral efficiency and so on, is based on the approach followed in the work in [55]. On the other 
hand, the estimation of Wi-Fi-related radio features such as the interferences among APs and the users´ 
reachable throughput is based on the works in [57] and [56], respectively. 

One of the key issues of DRL can be its long training time. In order to ameliorate it we adopt analytical 
performance models to estimate the radio interface performance metrics for URLLC services in an agile an 
accurate way. Particularly, we use a Queueing Theory (QT)-based model to ensure that a given resource 
quota assignment for an URLLC slice meets the service requirements [54]. Given a radio resource quota 
allocation expressed in terms of number of PRBs for an URLLC slice, the analytical performance evaluation 
comprises the following steps: 

1. A single-server queue with finite buffer models that packets are served on time. The length of the 
buffer Lmax is calculated as follows: 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑊𝑊 ⋅ �
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
𝜏𝜏

− 1�  

 

where W represents the number of PRBs, τmax stands for the radio interface maximum delay 
constraint, i.e., the maximum time spent for packet delivery, and 𝜏𝜏 represents the transmission time 
slot duration. 

2. The required W to satisfy a given PLRmax, i.e., PLR < PLRmax, is then calculated.  

Once the training has reached a considerable number of training steps, the ML inference host will be the 
responsible for providing the variation of the resource quota assigned to each slice, using the policy learnt 
in the training process. In order to determine the action for the slice c in cell b at(c,b) based on the policy 
learnt, the state st(c,b) is observed for this slice in the corresponding cell at the time t. In the inference mode, 
and putting the ML model in the context of the 5G-CLARITY architecture, the parameters that compose the 
state of the environment are metrics taken from the 5G-CLARITY data management framework (ML model 
input, see Section 7.2 of D2.2 [2]). Then, the ML model derives the outputs according to the ML logic. In this 
case, the ML model output will be the resource quota assigned to a given slice c in a determine cell b ξc,b 
modified accordingly to the action taken. The ML model operation in a 5G-CLARITY system requires the 
request of telemetry data in order to use it as input for the model and the communication of the slice 
resource quotas configuration to the Slice Manager, which will be carried out through the Intent Engine (see 
Section 8.2 of 5G-CLARITY D2.2 [2]). 
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 Description of initial experiments 

The training process in DRL comprises an agent that interacts with the environment. To accelerate the 
training process and facilitate the required data collection, the intended ML-model will be trained making 
use of the RAN simulator and performance analytical models, which were introduced in the previous 
subsection. 

First, in order to obtain preliminary results, several experiments that do not depend on the agent execution 
will be addressed. To that end, some metrics that define a specific state will be considered to evaluate the 
obtained reward. The purpose of these experiments is to get familiarized with some parameters related with 
the neural network configuration, in order to see how they influence on the learning and convergence 
process of the agent. Thus, these results will show the curve of the agent convergence process when varying 
the parameters under study (e.g., discount factor, learning rate). 

Then, some experiments will be performed to analyse the impact of some RL parameters such as the discount 
rate that determines the relative importance of future rewards and the learning rate. In addition, different 
behaviours of the algorithm with a particular trade-off between exploration and exploitation will be 
evaluated. Some variants of the reward function could also be evaluated in order to select the most 
appropriate, as well as the possibility to include other factors in the formula to consider high-level operator’s 
objectives (e.g., energy savings). 

 Evaluation results 

 Setup 

The design of the DQN agent is based on a critic representation. This critic takes the observations and the 
actions as input and returns the corresponding expectation of the long-term reward. Figure 3.47 depicts the 
architecture of the neural network that conforms the critic. In the figure, we can see that the critic network 
is composed of multiple paths. Specifically, one of the paths is created for the observations and the other for 
the actions. Then, these paths are combined with a combination layer, whose output is fed to another neural 
network. The settings of some of the parameters related with the configuration of the neural network and 
the DQN agent hyperparameters are shown in Table 3-18. 

 

 
Figure 3.47. Architecture of the critic network. 

 

Table 3-18. Configuration of DQN Agent Hyperparameters. 
DQN Agent Hyperparameters Configuration 

Reinforcement learning method DQN with critic network (value based) 
Learning rate 0.001 

Gradient Threshold 1 
Mini-batch size 32 
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Discount factor 0.9 
Experience buffer length 2000 
Target update frequency 4 
Target update method Periodic 

ε-greedy exploration 
Epsilon 0.9 

EpsilonMin 0.01 
EpsilonDecay 0.005 

 

 Preliminary results  

Firstly, we include some results related to the agents training process. Figure 3.48 summarizes the training 
process of the eMBB slice agent obtained with the RL Matlab framework for a specific scenario. More 
precisely, it includes the instantaneous and average rewards, and the episode Q0. The average reward is 
computed over 3 samples of the instantaneous reward. The Episode Q0 indicates the estimate of the 
discounted long-term reward at the start of each episode, given the initial observation of the environment. 
As training progresses, if the critic is well designed, Episode Q0 approaches the true discounted long-term 
reward as the training progresses (see Figure 3.48).  

As observed, the agent needs around 300 episodes to get the convergence and learn the optimal amount of 
PRBs that has to allocate to the eMBB slice in order to meet the aggregated mean throughput in a specific 
scenario realization.  

 

 
Figure 3.48. eMBB slice agent learning process for a concrete scenario using DQN agent. 
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Figure 3.49. URLLC slice agent learning process for a concrete scenario using DQN agent. 

Similarly, Figure 3.49 depicts the training process of the URLLC slice agent obtained with the same framework. 

Preliminary results suggest that the agent requires approximately around 200 episodes to learn the optimal 
amount of PRBs that has to allocate to the URLLC slice in order to meet a specified packet loss ratio and a 
mean aggregated throughput for a specific scenario realization. 

On the other hand, several experiments have been conducted for the sake of analyzing how the configuration 
of the hyperparameters impact on the convergence of the training process. Specifically, these experiments 
have been conducted using Python tool. Figure 3.50 shows the convergence of the training process of the 
eMBB agent for several values of the discount factor. As we can observe in the figure, the value of the 
discount factor implies a variation of the number of training steps to get the convergence of the agent. The 
curves in the figure demonstrates that the larger the value of this parameter, the smaller the number of 
steps needed to get the convergence in the agent training process.  

 
Figure 3.50. Training process for different values of the discount factor parameter. 
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Figure 3.51. Training process for different values of the learning rate parameter. 

This means that if the agent is aware of the rewards in the distant future that are relative to the ones 
obtained in the immediate future, the convergence will be reached in a shorter training period. The learning 
rate is other hyperparameter whose configuration is crucial for the training process. The learning rate 
measures how fast  the model is able to get adapted to the problem. Small learning rates require more 
training epochs due to the small changes made to the neural network weights in each update. In contrast, 
large learning rate values result in rapid changes and require fewer training epochs, but could conduct the 
model to converge too quickly to a suboptimal solution. In line with Figure 3.50, Figure 3.51 depicts the 
curves of the convergence of the eMBB agent training process. As observed in the figure and as previously 
discussed, the training process duration is also dependent of this parameter. We can see that when the 
learning rate is higher, a larger number of training steps are needed to get the optimal solution of the mean 
reward. 

Figure 3.51 compares the training process between starting using already trained model (line in orange) or 
not (line in blue). As observed, using an already trained model speeds up the training process for new 
unknown scenarios. This saving time becomes more important when the variability of the temporal traffic 
load increases as it is expected the agent must be trained more often to adapt faster to the changing traffic 
conditions. Finally, proper operation of the agent is validated using a single setup.  

 

 
Figure 3.52. Agent convergence with and without pretrained model. 
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Figure 3.53. eMBB agent operation. 

On the one hand, we have trained the eMBB agent on a simplified version of the simulator based on 
Shannon´s capacity. Additionally, for the time being we are considering only the users mean SINR as an input 
parameter for the agent in order to make the decision of the amount of resources to be allocated. Figure 
3.53 demonstrates the effectiveness of the eMBB agent operation for the dynamic resource provisioning. 
We can see that the agent learns to allocate to the eMBB slice the radio resources that are necessary to meet 
the slice traffic demand, represented with the line in purple. 

On the other hand, the URLLC agent performance can be found in Figure 3.54. The URLLC agent tries to 
satisfy the radio resources needs of services that demand stringent latency requisites. Particularly, in our 
scenario (depicted in Figure 3.45) the URLLC agent is responsible for allocating radio resources to the URLLC 
slice composed of the control devices deployed along the production lines. 

To that end, the URLLC agent performance is based on an analytical model that provides the amount of radio 
resources (in terms of number of PRBs) required to reach a certain capacity to deal with the traffic demands 
ensuring a delay requirement and guaranteeing a packet loss ratio of 1 ms and 10-4, respectively (refer to 
Section 3.2 of 5G-CLARITY D2.3 [58] for further model details). 

 
Figure 3.54. URLLC agent operation. 
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An initial description of the agent operation is as follows: every time there is a variation on the traffic demand, 
the agent adapts the amount of resources assigned to the URLLC slice it manages. This amount of resources 
is given by the analytical model above mentioned. This analytical model is computationally complex and 
takes large amount of computational time to run the simulations, what will lead to long-lasting trainings. For 
that reason, we have run some simulations of the model for several values of the URLLC slice bandwidth 
(represented by W) for the sake of obtaining a representative data set that makes us able to interpolate the 
rest of values inside the contemplated range of W. 

In a similar way to the eMBB agent, in Figure 3.54 we show the performance of the URLLC agent. As observed, 
the agent learns to allocate the amount of PRBs that are necessary to adapt to the traffic variations. 

3.7 Dynamic transport network setup and computing resources provisioning  
In 5G-CLARITY D4.1 an initial high-level design of a deep reinforcement learning (DRL)-based multi-agent 
solution was proposed to address the transport network setup and computing resources provisioning in a 
coordinated way. That initial design comprises four DRL agents: the agent in charge of distributing the delay 
budget among the different network domains, another agent to optimize the setup and allocate the 
transport resources quotas for each slice, and a couple of agents responsible for the computing resources 
provisioning and the virtual network functions (VNFs) embedding. In this deliverable, we focus on the DRL 
solution for configuring and allocating resources in an asynchronous TSN-based transport network. Unlike in 
D4.1, the goal here is to delve deeper into the implementation details, develop the proposal and provide 
some preliminary results showing its performance.  

 Initial implementation 

 System Model 

Figure 3.55 illustrates the system model considered. We assume the transport network is an asynchronous 
Time-Sensitive Networking (TSN) network, i.e., the constituent forwarding plane elements (e.g., TSN bridges) 
do not need a common and precise time reference to be synchronized. In these networks, each TSN bridge’s 
egress port includes an Asynchronous Traffic Shaper (ATS), whose queuing stages are depicted in Figure 3.55. 
The first queuing stage corresponds to the interleaved shaping to regulate the streams and consists of 𝑆𝑆 
shaped queues. The second stage comprises 𝑃𝑃 first-come first-served queues arbitrated by a strict priority 
transmission selection scheme, i.e., the traffic at a given queue has to wait for transmission as long as there 
are packets at any buffer with higher priority. The number of shaped queues 𝑆𝑆 might limit the implementable 
number of priority levels due to the queue allocation rules (QARs) of the interleaved shaping: a given shaped 
queue is assigned to an input port (QAR 1), an internal priority level (QAR 2), and a priority level in the 
previous hop (QAR 3). We assume there are a set of 5G-CLARITY slices sharing TSN-based TN. Each 5G-
CLARITY slice is mapped onto a VLAN (please refer to D4.1) and a traffic class (TC) that are encoded in the 
VLAN ID and the Priority Code Point fields of the IEEE 802.1Q header, respectively. There might be multiple 
5G-CLARITY slices with the same assigned TC. Two 5G-CLARITY slices might have different priority levels at a 
given ATS even though they belong to the same TC. To that end, the Internal Priority Value (IPV) at the 
corresponding ATS can be used [59].  We assume enough shaped buffers at each ATS allow for eight 
implementable priority levels as considered in TSN standards by default. We consider the aggregated data 
rate and aggregated burstiness demanded by each slice is known in advance and used as input for optimizing 
the transport network configuration.  Last, we suppose that the paths of the transport network are 
predefined.  

Although TSN standards allow for a finer granularity of the configuration at each ATS, our goal here is to find 
a configuration shared among all the flows of the same 5G-CLARITY slice. 
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Figure 3.55. Asynchronous TSN backhaul network interconnecting two gNBs with the edge cluster. There are two 

5G-CLARITY slices whose respective virtualized UPFs are hosted on the edge cluster. There is a segregated VLAN per 
slice in the backhaul network. 

Under this consideration the primary parameters to be configured at each ATS are the following: 

• Priority level assigned to the 5G-CLARITY slice.  

• Shaped buffers assigned to the 5G-CLARITY slice following the aforementioned QARs, though, for 
simplicity, this decision is not addressed here.  

The worst-case delay and jitter experienced by any flow of a given 5G-CLARITY slice 𝜏𝜏 ∈ 𝑇𝑇 depend on its 
priority level 𝑝𝑝𝜏𝜏. Specifically, the worst-case delay 𝐷𝐷𝜏𝜏 and jitter 𝐽𝐽𝜏𝜏 of the TC is given by: 

𝐷𝐷𝜏𝜏 =
∑ 𝑏𝑏�𝑘𝑘
𝑝𝑝𝜏𝜏
𝑘𝑘=1 + 𝑙𝑙𝑝𝑝𝜏𝜏

𝐿𝐿

𝐶𝐶 − ∑ 𝑟̂𝑟𝑘𝑘
𝑝𝑝𝜏𝜏−1
𝑘𝑘=1

+
𝑙𝑙𝜏𝜏
𝐶𝐶

  

𝐽𝐽𝜏𝜏 =
∑ 𝑏𝑏�𝑘𝑘
𝑝𝑝𝜏𝜏
𝑘𝑘=1 + 𝑙𝑙𝑝𝑝𝜏𝜏

𝐿𝐿

𝐶𝐶 − ∑ 𝑟̂𝑟𝑘𝑘
𝑝𝑝𝜏𝜏−1
𝑘𝑘=1

  

Where 𝑟̂𝑟𝑘𝑘 and 𝑏𝑏�𝑘𝑘 are the aggregated committed rate and aggregated burstiness or burst size at the priority 
level 𝑘𝑘, respectively. 𝑙𝑙𝑝𝑝𝜏𝜏

𝐿𝐿  is the maximum frame size or Maximum Transmission Unit (MTU) allowed in the 
priority levels lower than the priority level assigned to the 5G-CLARITY slice. 𝐶𝐶 denotes the ATS link capacity. 
And 𝑙𝑙𝜏𝜏 stands for the maximum packet size generated by the 5G-CLARITY slice. 

 Problem Statement 

Under the system model considered above, the problem covered here consists of finding a feasible 
configuration of the asynchronous TSN transport network subject to the following constraints: 

• The E2E transport network jitter/delay budgets of every 5G-CLARITY slice is met.  
• The aggregated capacity allocated to a given ATS must not exceed the physical capacity of the 

respective link.  

The problem aims to find a satisfiable 5G-CLARITY slice-to-priority level assignment at each ATS of the 
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network. 

 Initial Agent Design 

To solve the problem stated above, we opt for developing a deep reinforcement learning (DRL)-based agent 
to find a feasible 5G-CLARITY slices-to-priority levels assignment for an ATS/link. We use this agent to find 
the configuration of every ATS in the transport network. In order to provide coherence among the 
configurations of the different ATSs, e.g., per-hop delay/jitter budgets distribution for every path and 5G-
CLARITY slice and estimation of the per slice traffic demand at each ATS, we rely on a master algorithm in 
charge of configuring the inputs of the DRL agents based on some criteria. At each ATS, there is a set of 5G-
CLARITY slices 𝑇𝑇, each with a traffic demand characterized by an aggregated sustainable rate, an aggregated 
burst size, and a maximum transfer unit. The DRL agent is in charge of determining the priorities for each 
5G-CLARITY slice at each ATS. 

To model the priority assignment problem for the asynchronous traffic shaping using the RL framework, the 
following components or their operation (e.g., agent) need to be formally defined for the specific problem: 
i) agent, ii) environment, iii) observations or state, iv) the actions and v) the reward. 

• Agent: The agent’s goal is to find a satisfiable 5G-CLARITY slice-to-priority assignment while fulfilling 
the constraints listed in Subsection 3.7.1.2. The agent’s operation is as follows. At the beginning all 
the 5G-CLARITY slices are assigned to the priority level one (the highest priority level). At every 
episode step, the agent chooses the 5G-CLARITY slice for which decreasing its priority level. The 
episode will finish either when a maximum number of steps are run or when the agent finds a valid 
configuration for all the 5G-CLARITY slices, i.e., a configuration that meets all the problem constraints. 
The maximum number of steps per episode is set to the number of 5G-CLARITY slices times the 
number of available priority levels. 

• Environment: ATS with eight priority levels. There is a set of 5G-CLARITY slices, each with a traffic 
demand characterized by an aggregated sustainable rate, an aggregated burst size, and a maximum 
transfer unit at the ATS. Each 5G-CLARITY slice has also delay and jitter budgets to be met at the ATS. 
The agent is in charge of mapping the 5G-CLARITY slices onto the priorities so that the traffic demand 
of the slice, and the hop’s delay and jitter budgets are met. 

• Actions: Let 𝐴𝐴 = {↓1, … , ↓𝜏𝜏, … , ↓𝑇𝑇𝑇𝑇} denote the set of agent’s actions, where ↓𝜏𝜏 stands for the agent 
decreases the priority level of the 5G-CLARITY slice  𝜏𝜏 ∈ [1,𝑇𝑇𝑇𝑇] at the ATS. 

• Observations: The agent’s observations are: 

− The aggregated data rate 𝑟̂𝑟𝜏𝜏  and burstiness 𝑏𝑏�𝜏𝜏  to be allocated for each 5G-CLARITY slice ∈
[1,𝑇𝑇𝑇𝑇] . 

− The maximum packet size of each 5G-CLARITY slice. 

− The E2E transport network delay/jitter budget Ψ𝜏𝜏 = min�𝐷𝐷𝜏𝜏
𝑞𝑞𝑞𝑞𝑞𝑞, 𝐽𝐽𝜏𝜏

𝑞𝑞𝑞𝑞𝑞𝑞� for each 5G-CLARITY slice 
∈ [1,𝑇𝑇𝑇𝑇]  , where 𝐷𝐷𝜏𝜏

𝑞𝑞𝑞𝑞𝑞𝑞  and  𝐽𝐽𝜏𝜏
𝑞𝑞𝑞𝑞𝑞𝑞  are the E2E transport network delay and jitter budgets, 

respectively. 
− The number of implementable priority levels 𝑃𝑃 at the ATS. 
− The physical link capacity 𝐶𝐶 handled by the ATS. 

• Reward: For every action taken by the agent, it is compensated or penalized according to the 
following reward function:  

𝑅𝑅 ← 0; 
𝑁𝑁 ← 0; 
For each 5G-CLARITY slice 𝜏𝜏 ∈ [1,𝑇𝑇𝑇𝑇] 
 𝑝𝑝𝜏𝜏 ← get priority currently assigned to slice 𝜏𝜏 
 If 𝑝𝑝𝜏𝜏 ≥ 8 
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If the delay/jitter constraints for the slice are met 
If the delay/jitter experienced by the slice has changed 

   𝑅𝑅 ← 𝑅𝑅 + 1; 
𝑁𝑁 ← 𝑁𝑁 + 1; 

Endif  
Else 

If the delay/jitter experienced by the slice has changed 
𝑅𝑅 ← 𝑅𝑅 − 1; 
𝑁𝑁 ← 𝑁𝑁 + 1; 

Endif 
Endif 
Else 
𝑅𝑅 ← −10; 

Endif 
Endfor 
R <- R/N; 
 

The reward defined above encourages the agent to decrease the priority level of the 5G-CLARITY slices with 
lenient delay/jitter constraints, thus decreasing the delay experienced by the 5G-CLARITY slices with the 
most stringent delay requirements. More precisely, given an action, the 5G-CLARITY slice that has changed 
its priority level contributes positively to the reward as long as its delay and jitter requirements are still 
fulfilled. The rest of the 5G-CLARITY slices, i.e., those whose priority levels are not affected by the action, will 
contribute positively to the reward if only if their experienced worst-case delay and jitter is decreased as a 
consequence of the action. The rationale behind this reward is that decreasing the priority level of a given 
5G-CLARITY slice will increase or keep the same delay/jitter of the slice and reduce or keep the same delay 
of the rest of 5G-CLARITY slices. On the other hand, when the agent decreases the priority level of a 5G-
CLARITY slice and their delay/jitter constraints are not fulfilled anymore as a consequence of the action, then, 
the agent is negatively rewarded. Last, observe the agent is penalized with –10 when it tries to assign an out-
of-range priority level to a given 5G-CLARITY slice (e.g., priority 9 to any slice in an ATS with 8 priority levels 
as considered).  

Regarding the RL agent operation phase (inference), the agent is triggered at high time scales, i.e., time 
frames from several minutes to hours. Specifically, the agent will be triggered when new 5G-CLARITY slices 
are created or destroyed or when the committed traffic demand of one of the ongoing 5G-CLARITY slices 
changes. Finally, it shall be noted that the use of ML for assisting the asynchronous TSN network 
configuration problem is justified by the computational complexity exhibited by analytical optimization 
methods, as shown in Figure 3.56 and Figure 3.57. Figure 3.56 shows the computational complexity for 
configuring an ATS-based transport network with four 5G-CLARITY slices as a function of the number of links. 
On the other hand, Figure 3.57 depicts the computational complexity for configuring an ATS-based transport 
network with eight links as a function of the number of 5G-CLARITY slices.  

 
Figure 3.56. Computational complexity to find the optimal configuration (e.g., 5G-CLARITY slices prioritization and 
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per-link capacity reservation) versus the number of links in the ATS-based transport network.  

 
Figure 3.57. Computational complexity to find the optimal configuration (e.g., 5G-CLARITY slices prioritization and 

per-link capacity reservation) versus the number of 5G-CLARITY slices in the ATS-based transport network.  

The ATS-based configuration problem was formulated as a convex mixed-integer nonlinear optimization 
program that was solved using Mosek solver [61]. As observed, using exact methods, finding the optimal 
configuration becomes an intractable problem for a network with more than 22 links and four 5G-CLARITY 
slices (see Figure 3.56) or a network with eight links conveying more than seven 5G-CLARITY slices (see Figure 
3.57). 

 Practical Issues and Solutions 

The proposed solution overcomes some of the DRL framework’s practical issues as described below: 

− Slow training process. DRL exhibits an inefficient learning process, then, speeding up the simulation 
of the environment is crucial. In this regard, our solution relies on the analytical performance models 
of the ATS which enable to estimate the performance of the asynchronous network with great agility. 
On the other hand, our solution intentionally sets the per hop delay/jitter budget in order to allow 
for the compositional analysis of the network, thus further reducing the time required to estimate 
the network performance. 

− Lack of reliability.  The actions issued by the agent are uncertain and might be unfeasible, i.e., the 
corresponding configuration might not fulfil all the problem constraints. To deal with this issue, again, 
we reckon on the analytical performance models of the asynchronous TSN networks to validate the 
agent’s actions. If the actions are not feasible, they are not applied, and the agent is penalized with 
a negative reward and has to issue new actions for configuring the network. Thus, the QoS requisites 
of the transport network data plane are always met. Please refer to [59] and [60] for further details. 

On the other hand, it is difficult or even impossible either to estimate by simulation or directly measure in a 
real network the worst-case jitter/delay experienced by a given stream. In this way, the use of analytical 
performance models overcomes this problem. 

 Evaluation methodology 

The proposed RL agent is evaluated through simulation. The scenario considered is depicted in Figure 3.58. 
An asynchronous TSN network is used as the 5G-CLARITY system backhaul network. There are two physical 
machines or servers connected to the BN. Each server hosts four virtualized UPF instances, each belongs to 
a different 5G-CLARITY slice. Then, there are eight 5G-CLARITY slices whose priorities must be configured for 
every ATS in the network. We considered the physical network interfaces of the servers also include an ATS 
for handling the frames at layer 2. The traffic of each 5G-CLARITY slice is distributed equally among the two 
gNBs. 
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Figure 3.58. Scenario considered to test the DRL-assisted solution for configuring the ATS-based transport network. 

The agent has been implemented in MATLAB using the RL toolbox. Specifically, we use a DQN agent with a 
critic network. The configuration of the main hyperparameters is included in Table 3-19. Figure 3.59 depicts 
the design used for the critic network. 

Table 3-19. Primary hyperparameters configuration for the DRL agent used to configure the ATS-based transport 
network. 

DQN agent hyperparameters Configuration 
Reinforcement learning method DQN with critic network (value 

based) 
Learning rate 0.0001 

Gradient Threshold 1 
Mini-batch size 32 
Discount factor 0.9 

Experience buffer length 10000 
 Target update frequency  4 

Target update method Periodic 
ε-greedy exploration 

Epsilon 1 
EpsilonMin 0.1 

EpsilonDecay 0.0001 
 

 

 
Figure 3.59. Critic network design used for the DQN agent used for the configuration of the ATS-based transport 

network. 
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 Evaluation results 

Figure 3.60 and Figure 3.61 illustrate the training process of the DQN agent in the RL framework of MATLAB 
for two specific scenarios, namely, the priority configuration of four and eight 5G-CLARITY slices, respectively. 
Specifically, the figure includes the instantaneous and average rewards, and the episode Q0. The average 
reward is computed over three samples of the instantaneous reward. The episode Q0 is “the estimate of the 
discounted long-term reward at the start of each episode, given the initial observation of the environment. 
As training progresses, if the critic is well designed episode Q0 approaches the discounted long-term reward”. 
As observed, the agent needed around 2500 episodes to converge, i.e., for finding the way to prioritize the 
four 5G-CLARITY slices that maximizes the long-term reward while meeting the requirements of all the slices.  

In contrast, the agent required around 5500 episodes to converge in the case of prioritizing eight 5G-CLARITY 
slices. The results of this experiment suggest is more complex to find the configuration as the number of 5G-
CLARITY slices increases.  

In fact, Figure 3.61 shows the DQN agent only found a valid 5G-CLARITY slices prioritization during the first 
2500 episodes in the case of eight slices, whereas the agent finds valid prioritization for the slices from the 
very beginning in the case of four slices (see Figure 3.60). Also, although not illustrated in these figures, we 
observe that the complexity of finding a valid ATS configuration increases with the utilization of the link. 

One of the key benefits of using RL to find the optimal configuration of the ATS-based transport network is 
the computational complexity reduction. Solving the problem of assigning priorities to each 5G-CLARITY slice 
given an optimization criterion by exhaustive search requires 𝑇𝑇𝐶𝐶𝑃𝑃  iterations, where 𝑇𝑇𝑇𝑇 is the number of 
slices to be prioritized and 𝑃𝑃 is the number of priority levels in the ATS to be configured. For instance, for 8 
priority levels and 8 traffic classes, roughly 17 million of iterations are required. We measured the execution 
time to compute the optimal priority assignment to eight slices considering eight priority levels in order to 
maximize the time slack of the slices. The exhaustive search approach required 2 hours and 48 minutes to 
find the optimal solution, whereas the DRL agent found the solution in approximately 0.7 seconds.  

 

 
Figure 3.60. DQN agent learning process for finding prioritization of four 5G-CLARITY slices at a given ATS. 
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Figure 3.61. DQN agent learning process for finding the prioritization of eight 5G-CLARITY slices at a given ATS. 

 

Last, we validated the proper operation of our solution by finding the prioritization of the eight 5G-CLARITY 
slices in Figure 3.58 for every ATS. The traffic demand for every slice together with the end-to-end delay/jitter 
budget is included in Table 3-20. Table 3-21 includes the utilizations of the different links in the network 
given our setup. Table 3-22, Table 3-23, Table 3-24, and Table 3-25  include the traffic prioritization of the 
different 5G-CLARITY slices along with their experienced worst-case delay for links #1, #2, #3, and #4 and #5, 
respectively. As shown in Figure 3.62, the end-to-end delay/jitter requirements for all the slices are met, thus 
validating the operation of the DRL-assisted solution described here. 

Table 3-20. 5G-CLARITY slice traffic demand characteristics and delay/jitter onstraint 

Slice Agg. Rate Agg. Burstiness MTU End-to-end delay/jitter 
budget 

Slice #1 5 Mbps 12000 bytes 1500 bytes 1.25 ms 

Slice #2 5 Mbps 12000 bytes 1500 bytes 1.5 ms 

Slice #3 5 Mbps 12000 bytes 1500 bytes 1.75 ms 

Slice #4 5 Mbps 12000 bytes 1500 bytes 2 ms 

Slice #5 5 Mbps 12000 bytes 1500 bytes 1.375 ms 

Slice #6 5 Mbps 12000 bytes 1500 bytes 1.5 ms 

Slice #7 5 Mbps 12000 bytes 1500 bytes 1.875 ms 

Slice #8 5 Mbps 12000 bytes 1500 bytes 2.125 ms 
 

Table 3-21. Links utilizations in the scenario depicted in Figure 3.58 

Link Link #1 Link #2 Link #3 Link #4 Link #5 

Utilization 20% 20% 16% 10% 10% 
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Table 3-22. 5G-CLARITY slices prioritization, delay budget and worst-case delay for link #1 (see Figure 3.62). 

Slice Priority Delay Budget WC Delay 

Slice #1 1 500 µs 480 µs 

Slice #2 1 500 µs 480 µs 

Slice #3 2 700 µs 653.3 µs 

Slice #4 2 700 µs 653.3 µs 
 

Table 3-23. 5G-CLARITY slices prioritization, delay budget and worst-case delay for link #2 (see Figure 3.62). 

Slice Priority Delay Budget WC Delay 

Slice #5 1 500 µs 480 µs 

Slice #6 1 500 µs 480 µs 

Slice #7 2 700 µs 653.3 µs 

Slice #8 2 700 µs 653.3 µs 
 

Table 3-24. 5G-CLARITY slices prioritization, delay budget and worst-case delay for link #3 (see Figure 3.62). 

Slice Priority Delay Budget WC Delay 

Slice #1 1 250 µs 240 µs 

Slice #2 2 500 µs 456.5 µs 

Slice #3 1 350 µs 240 µs 

Slice #4 2 600 µs 456.5 µs 

Slice #5 1 375 µs 240 µs 

Slice #6 2 500µs 456.5 µs 

Slice #7 2 475µs 456.5 µs 

Slice #8 3 725µs 494.5 µs 
 

Table 3-25. 5G-CLARITY slices prioritization, delay budget and worst-case delay for links #4 and #5 (see Figure 3.62). 

Slice Priority Delay budget WC Delay 

Slice #1 1 500 µs 480 µs 

Slice #2 1 500 µs 480 µs 

Slice #3 1 700 µs 480 µs 

Slice #4 1 700 µs 480 µs 

Slice #5 1 500 µs 480 µs 

Slice #6 1 500 µs 480 µs 

Slice #7 2 700 µs 578.9 µs 

Slice #8 2 700 µs 578.9 µs 
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Figure 3.62. Worst-case delay experienced and E2E delay budgets for every 5G-CLARITY slice. 

 

3.8 Adaptive AI-based defect-detection in a smart factory  
In 5G-CLARITY D4.1 [1], the problem statement and initial high-level design of the adaptive AI-based defect-
detection in a smart factory have been provided. According to the given problem statement, this use case 
considers a production line in a smart factory where defective pieces on the production line have been 
detected by an AI-based defect-detection algorithm and an automatic intervention in order to stop the line 
and take the defective pieces out of the line is triggered. As such an immediate intervention requires real-
time processing and visualization of geometric features for manufactured parts. This can be done either at 
an edge device within the factory or at a remote worker location outside the factory. Therefore, an adaptive 
low-latency and energy efficient AI-powered defect detection solution is needed. In this deliverable, the 
initial implementation details and preliminary results on latency and energy efficiency for different 
implementation options are provided. 

 Initial implementation 

For the initial implementation, a smart factory testbed is considered. As depicted in Figure 3.63, the smart 
factory testbed is divided into two parts as (i) factory level that consists of the robotic arm, conveyor belt, 
camera and a fog device that is located close to the robotic arm and the camera in order to them e.g., send 
comment to the robotic arm to remove the defective item, change the zoom or tilt of the camera; and (ii) 
edge side that consists of Field Programmable Gate Array (FPGA), Central Processing Unit (CPU) or Graphics 
Processing Unit (GPU) based platforms. The camera provides continuous video streaming to the edge server. 
The edge server performs an AI-based object-detection algorithm to detect defective pieces on the streamed 
video. If the piece on the conveyor belt is detected as a defective item, the edge server sends a control signal 
to intervene the production and remove the defective item from the conveyor belt. 
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Figure 3.63. AI-based defect-detection implementation setup 

 

 
Figure 3.64. Cubes with stickers on used to mimic production items on the conveyor belt  

In the setup, cubes are used as the products on the production line. As shown in Figure 3.64, the cubes are 
used with several stickers on them to represent whether the item is defective or not. Accordingly, if a specific 
sticker or set of stickers is detected by the AI-based object-detection algorithm running on the edge 
device/server, the cube (product/item) on the conveyor belt is considered as a defective item.  

 Evaluation methodology 

The algorithm used for defect detection typically follows a framework for designing and training DNN. The 
choice of the detection algorithm and its AI training model depends on the characteristics and capabilities of 
the resources deployed for both the training and inference environments. These characteristics may vary 
dynamically and therefore an adaptation to the algorithm and/or its training model, as well as where it is 
instantiated, may be required to achieve low latency and energy efficient deployment. As noted in the initial 
high-level design of this use case in D4.1, the YOLO "you only look once" algorithm is used for object-
detection/defect-detection. The YOLO algorithm targets real-time processing where the detection procedure 
is taken as a regression task in order to increase the detection speed and pass the image only one time 
through the network. In this implementation, the considered version of the YOLO algorithm is version 3. The 
neural network used for YOLOv3 improves the accuracy of the previous versions. The YOLO algorithm is built 
on Darknet [62] which is a GPU accelerated framework to design and train DNNs. The version Darknet-53 
which acts as a backbone for the YOLOv3 object-detection approach is considered in this implementation. 
The Darknet-53 is trained with Imagenet [63] classification data set. The DNN in Darknet-53 uses multi-scale 
predictions, which means that detection phase is applied to different scales of the feature map.  
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Figure 3.65. Used DNN architecture 

The input image is down sampled three times by factors of 32,18, and 8. As shown in Figure 3.65, the first 
detection is made by layer 82, where up to there, the image is down sampled by the convolutional layers 
such that 81st layer has a stride of 32. If the input image is 416x416 then the resultant feature map is 13x13. 
One detection is made using 1x1 detection kernel, giving a detection feature map of 13x13x255. Then, from 
layer 79, the feature map in sent through convolutional layers before being up sampled by a factor of 2. 
Afterwards, the feature map is concatenated with previous features from layer 61. The second detection is 
made at layer 94 yielding a feature map of 26x26x255. The final detection is done at layer 106, which 
produces a feature map of size 52x52x255. Detection at different layers helps in increasing the accuracy in 
detecting small objects. The up samples concatenated with previous layers help in preserving the fine grain 
detection done before. 

As the YOLO algorithm is built on Darknet, which is a GPU accelerated framework for designing and training 
DNNs, the YOLO algorithm suffers from challenges pertaining to execution latency and energy consumption. 
To mitigate these challenges, instead of an GPU-based solution, an FPGA-based solution has been studied. 
The FPGA can provide lower latency than the traditionally used GPU platforms for this type of application. 
The FPGA platform may provide a better energy efficiency solution compared to CPU and GPU based 
solutions. Taking advantage of the data processing units, higher throughput in terms of number of processed 
frames per second can also be achieved by FPGA-based solution. 

 Evaluation results 

Comparison between FPGA-based and GPU-based object-detection by means of latency and energy 
efficiency is provided in Table 3-26. For both platforms, three different object-detection algorithms, namely 
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YOLOv3, Mobilenetv2_SSD [64][65] and VGG16_SSD [66] are deployed to investigate end-to-end (E2E) 
latency, power consumption and frame-per-second (FPS) per Watt consumption. For the FPGA-based 
platform, Xilinx ZCU102 that has a quad-core Arm® Cortex®-A53, dual-core Cortex-R5F real-time processors, 
and a Mali™-400 MP2 GPU is used. The MaliTM-400 MP2 GPU in Xilinx ZCU102 has a clock rate up to 667 
MHz. Whereas, for the GPU-based platform, GeForce RTX 2080 Ti which has a clock rate up to 1545 MHz is 
used.  

Regarding the E2E latency performance, the deployed object-detection algorithms can be listed from 
minimum to maximum achieved latency as YOLOv3, VGG16_SSD and Mobilenetv2_SSD for the GPU-based 
platform and YOLOv3, Mobilenetv2_SSD and VGG16_SSD for FPGA-based platform. For both platforms, 
YOLOv3 achieves significantly lower E2E latency compared to other two algorithms. The lowest E2E latency 
performance between the considered algorithms and platforms is achieved when the FPGA-based platform 
is used with YOLOv3 algorithm. In addition to that YOLOv3 consumes 120 Watts, which is the same with 
Mobilenetv2_SSD algorithm and half of the power consumption of VGG16_SSD algorithm that is 240 Watts, 
when the GPU-based platform is used. When the FPGA-based platform is used with YOLOv3 algorithm, the 
power consumption is 4 Watts higher than what Mobilenetv2_SSD achieves, and 5.5 Watts lower than what 
VGG16_SSD algorithm achieves. Therefore, it can be said that YOLOv3 achieves a better latency-energy 
consumption trade-off compared to Mobilenetv2_SSD and VGG16_SSD algorithms. For the considered 
platforms, the FPGA-based platform consumes significantly lower power and provides better E2E latency 
performance than the GPU-based platform. 

 

Table 3-26. Latency and energy consumption performance results for object-detection 

Platform 
Object-Detection 

algorithm 
E2E latency (FPS 
multithreaded) 

Power [W] FPS per Watt 

GPU: GeForce 
RTX 2080 Ti 

YOLOv3 5.72 ms (175) 120 1.46 

Mobilenetv2_SSD 49.75 ms (20) 120 0.17 

VGG16_SSD 22.1 ms (45) 240 0.19 

FPGA: Xilinx 
ZCU102 

YOLOv3 4.52 ms (220) 17 12.94 

Mobilenetv2_SSD 16.37 ms (61) 13 4.69 

VGG16_SSD 22 ms (45) 22.5 2 
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4 AI Engine  
The initial design of the 5G-CLARITY AI Engine was described in 5G-CLARITY D4.1 [1][1]. The goal of this 
section is to revise that initial design and to discuss the used technologies and implementation details of the 
first AI engine prototype. 

4.1 AI Engine technologies 
The open-source Function-as-a-Service (FaaS) platform OpenFaaS [33] has been selected as the basis for 
implementing the AI engine. OpenFaaS is a flexible and lightweight toolkit that advertises to be able to run 
anywhere, with any code and at any scale: 

• Anywhere: Avoid lock-in through the use of Docker. Run on any public or private cloud. 

• Any code: Build both microservices & functions in any language. Legacy code and binaries. 

• Any scale: Auto-scale for demand or to zero when idle. 

The conceptual diagram shown in Figure 4.1 gives a high-level overview of OpenFaaS concepts, with 
endpoints for the user, monitoring, Kubernetes as the FaaS provider and two example functions (e.g. 
executable ML models in the 5G-CLARITY case). Towards the user, OpenFaaS exposes REST endpoints that 
can be accessed via a CLI client, a graphical user interface or REST requests directly. The central FaaS provider 
(recently Kubernetes) provides the infrastructure for deployed functions. Each function contains a function 
watchdog that listens for incoming requests and the process that fulfils the request. In the 5G-CLARITY AI 
engine, this process represents an ML model that can be called and acts upon the given input. For example, 
a pre-trained indoor ranging ML model (Section 3.5) might await a trigger and/or data to predict the range 
between two locations such as the UE and the base station, which will then produce a range figure as output.  

 

 
Figure 4.1. Overview of OpenFaaS concepts (source: [68]) 
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Figure 4.2. AI Engine tech stack, with infrastructure, application and machine learning model execution layers  

Figure 4.2 presents the tech stack of the AI engine, with OpenFaaS as the supporting framework. This shows 
that the AI engine uses a containerised approach and can be deployed in any Docker-able infrastructure, 
such as Kubernetes clusters on-premises or in the cloud. 

In the application layer is the OpenFaaS core, which uses Prometheus to monitor the demand of services 
(which are automatically scaled by OpenFaaS), and NATS Streaming to enable asynchronous function calls 
for long-running services such as ML model training. On top of the service demand monitoring, the 5G-
CLARITY AI engine also employs Prometheus (in conjunction with a visualisation tool like Grafana) to monitor 
the health and performance of the running ML models. 

The ML execution layer contains the actual ML models that are deployed in the AI engine, with direct support 
for several programming languages as well as generic binary files. That means that any ML algorithm written 
in, for example, Python, Java or Go, or using ML libraries like PyTorch or TensorFlow, can be wrapped into 
an OpenFaaS function and deployed into the AI engine. In this way, the deployed ML models can be provided 
language and framework independent. 

4.2 Consolidation of AI engine design – Revision and implementation details 
Sections 4.2.1 to 4.2.4 discuss implementation details for various aspects of the AI engine, including updates 
to the initial design from 5G-CLARITY D4.1 1. 

 Exposed services 

There are some changes to the initial AI engine services that were described in 5G-CLARITY D4.1. Table 4-1 
lists the services together with revisions for 5G-CLARITY D4.2. The main changes concern the split of the ML 
Model Management service into ML Model Deployment and ML Model Removal services. Another change is 
the removal of the ML Model Registry service, as that functionality is being provided partially by the 
deployment service (ML models are automatically registered in the deployment process) and partially by the 
ML Model List service (which lists the registered ML models). 

Table 4-1. AI Engine Services. 

MF Service ID MF Service Name Description 
Reference 

Specifications 

AIEngine_Ml_Mod
_Deploy 

NOTE: This is a 

ML Model 
Deployment 
service 

Deployment of a new ML model. If the model 
already exists, it can be updated instead. A 
new model will automatically be registered 
in the ML Model Registry during the 

Custom (REST) 
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combination of 
the 
AIEngine_Ml_Mod_
Mgmt and 
AIEngine_Ml_Mod_
Register services 
defined in D4.1 

deployment process. 

AIEngine_Ml_Mod
_Remove 

NOTE: This is 
replacing the 
AIEngine_Ml_Mod_
Mgmt service 
defined in D4.1 

ML Model 
Removal service 

Removal and de-registration of an existing 
ML model. 

Custom (REST) 

AIEngine_Ml_Mod
_List 

ML Model List 
service 

Lists the ML models that are currently 
deployed and ready for execution. 

Custom (REST) 

AIEngine_Ml_Mod
_Run 

ML Model 
Execution service 

Runs a deployed ML model that is available 
in the ML Service Registry. Once executed, 
the deployed ML model may run as a once-
off or recurrently. 

Custom (REST) 

AIEngine_Push_XA
pp 

xApp Pushing 
service 

Certain (real-time ready) ML models can be 
pushed down into the near-RT-RIC as xApps. 

Custom (REST) 

 

 Containerised ML models 

As was described in D4.1, the 5G-CLARITY AI engine hosts ML models that are wrapped in Docker containers 
for flexible, language independent and scalable execution. The containerisation of the ML models is an 
automated part of the deployment process, which means that the ML model designer requires little or no 
knowledge about Docker or containerisation. The ML model designer merely needs to provide the ML 
algorithm and include it into an OpenFaaS function template, while adhering to the templated input and 
output formats. The OpenFaaS platform takes care of the rest. OpenFaaS provides function templates for 
many languages, as well as a generic template for binary files. 

OpenFaaS comes with a command line interface tool (i.e., faas-cli) to control the various aspects of a 
function lifecycle, including creating a new function from a template. For example, executing the following 
command will create a new Python 3 function for the AI engine: 

faas-cli new --lang python3-aiengine <name> 

The newly created OpenFaaS function will contain a number of files, where the core part is the Python 
function handle(), inside a file called handler.py: 

def handle(request): 
    output = apply_ml_model_to(request) 
    expose_metrics(output) 
    return output 
 
The code inside this function will automatically be wrapped in a container and executed at every call to the 
AI engine, where the imported ML model code inside the handle() function will be applied to the input 
data (e.g. input feature values). The additional monitoring boilerplate code will expose ML model metrics to 
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the Prometheus monitoring system. With the faas-cli and the provided templates, the ML model 
designer is equipped to deploy their models into the AI engine. 

 ML service registry  

Deployed ML models are available in the ML service registry, which is provided by OpenFaaS’ function list. 
One option to access the ML service registry is through command line, where the following command lists 
all deployed models: 

faas-cli list 

The output of this command may look like depicted in Figure 4.3, listing all deployed models, how many 
replicas they have and how many invocations. 

 

Function Replicas Invocations 

Model A 1 324 

Model B 2 2091 

Model C 1 12 

Figure 4.3. Output of the faas-cli list command  

Another way to view the deployed ML models is through the graphical user interface (GUI) that is provided 
by OpenFaaS. Figure 4.4 shows this GUI with some deployed ML models. The GUI also allows to directly test 
the functionality of the ML model by creating input values, calling the ML model and inspecting the output. 
Both the faas-cli tool as well as the GUI will call the model through its REST API under the hood. 

 
Figure 4.4. ML service registry powered by OpenFaaS, showing several deployed ML models whose functionalities 

can be tested through the OpenFaaS GUI. 
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 ML model lifecycle management   

The lifecycle of an ML model in relation to the AI engine consists of the following processes: i) dockerising; 
ii) deployment; iii) execution; iv) monitoring; v) update and vi) removal. These processes will be discussed in 
the following subsections. 

 ML model Dockerising 

An ML model has to be Dockerised before it can be deployed in the AI engine. OpenFaaS provides a simple 
Dockerisation process via the faas-cli tool. It enables ML model designers to wrap their models into 
deployable Docker images simply by inserting the ML model code into a provided template. The following 
command will build a Docker image from the stack file (YAML) together with the raw code or binary file that 
were inserted into the template: 

faas-cli build -f <filename> 

The output is a Docker image, which can also be pushed to a Docker registry for future use. This step is 
optional and can be achieved by calling faas-cli push on the YAML stack file: 

faas-cli push -f <filename> 

A Docker registry allows for easy re-deployment as well as deployment in other systems without the need to 
build the image from scratch every time. 

 ML model deployment 

After the ML model has been Dockerised, it can be deployed in the AI engine. The following command 
deploys an ML model that has been Dockerised beforehand: 

faas-cli deploy -f <filename> 

Alternatively, the graphical user interface (GUI) provided by OpenFaaS can be used for model deployment 
(and other functionalities). Figure 4.5 exemplifies a deployment using the GUI, with the Docker image of the 
ML model and its name as input values. 

 
Figure 4.5. Function deployment through the OpenFaaS GUI  
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 ML model execution 

An ML model that has been successfully deployed can now be executed, or triggered, to deliver predictions 
to the user. There are two ways of executing a function: synchronously and asynchronously. Synchronous 
functions fulfil the role of short-lived functions that return an output in a short time and can time out if the 
processing is not finished within the desired time frame. Asynchronous functions can be long-lived without 
a set time out, but their output must be polled for separately (i.e., continuously asked whether the result is 
ready). Synchronous functions are suited for execution of trained ML models, whereas asynchronous 
functions are suited for ML model training. OpenFaaS uses NATS streaming to enable asynchronous functions. 

The faas-cli call below will execute a deployed ML model, where the optional -a flag specifies whether 
the model shall be executed asynchronously. 

faas-cli invoke <modelname> [-a] 

ML models can also be executed from within the GUI as shown in Figure 4.4, although programmatic 
execution is more practical for real world use cases (see Section 4.3). 

 ML model monitoring 

During the lifetime of an ML model, its performance can be monitored. For this purpose, the Prometheus 
instance that comes with OpenFaaS is configured to also monitor ML model metrics in addition to the default 
Infrastructure metrics, and the provided AI engine function template includes boilerplate code to expose the 
desired metrics to Prometheus. 

 
Figure 4.6. Monitoring of metrics related to an ML model with the name “mymlmodel”. Visualisation dashboard 

provided by Grafana. 
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Grafana can be used to visualise the exposed ML model metrics, and a recent version of Grafana is included 
in the AI engine installation. The graphs shown in Figure 4.6 exemplify the visualisation of metrics that are 
exposed by an ML model with the name “mymlmodel”, including the input values, prediction value, and 
prediction error. A possible use case for visualising ML model metrics is to be alerted when the ML model 
behaviour changes drastically and requires human intervention. Both Prometheus and Grafana can be used 
to set up alarms to notify the human users about certain changes. 

 ML model update 

The user can update the deployed ML model in the AI engine when a new version of an ML model has been 
developed or when the model has been trained on new data – for example after detecting a decline in 
prediction accuracy from the monitoring. The update process comprises the same steps as the deployment 
process (including Dockerisation of the new ML model) described in Sections 4.2.4.1 and 4.2.4.2, as the 
model deployment will overwrite an existing model with the same name. 

 ML model removal 

Finally, an ML model may be removed from the AI engine. The faas-cli command for removal is as follows:  

faas-cli delete <name> 

Alternatively, the models may also be removed directly from the GUI as shown in Figure 4.7.  

4.3 Functional validation 
The sections above introduced the faas-cli tool and the graphical user interface (GUI) as ways to control the 
ML model lifecycle in the AI engine in a user-friendly way. The programmatic way to interact with the AI 
engine is through REST, which will be the main interface between the intent engine and AI engine as well. 
This section describes the REST API endpoints that allow for programmatic life-cycle management of ML 
models. 

 

 
Figure 4.7. Deletion of a deployed function through the OpenFaaS GUI 
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 Deployment 

/system/functions (POST): 

Deploy an ML model, where the model is specified in the request body as exemplified below. 

{ 
  "service": "mymlmodel", 
  "network": "aimodel-net", 
  "image": "mymlmodel:latest", 
  "envProcess": "python index.py", 
  "labels": { 
    "name": "MyMLmodel" 
  }, 
  "annotations": { 
    "topics": "awesome-kafka-topic", 
    "desc": "This model is doing awesome ML stuff" 
  }, 
  "limits": { 
    "memory": "128M", 
    "cpu": "0.01" 
  }, 
  "requests": { 
    "memory": "128M", 
    "cpu": "0.01" 
  } 
} 

The response is 202 for a successfully deployed ML model and 400/500 otherwise. 

 Update 

/system/functions (POST):  

Update an ML model, with similar request body and responses to the deployment through POST. 

/system/scale-function/<name> (POST):  

Manually scale the ML model with a request body as outlined below. 

{"service": "mymlmodel", "replicas": 10} 

With the response codes 200/202 for successful scaling, 404 for model not found and 500 for other scaling 
errors. 

 List and model info 

/system/functions (GET):  

Get a list of all deployed ML models. This query has no input parameters and returns the following output 
(exemplified). 

[ 
  { 
    "name": "mymlmodel", 
    "image": "mymlmodel:latest", 
    "invocationCount": 1337, 
    "replicas": 2, 
    "availableReplicas": 2, 
    "envProcess": "python index.py", 
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    "labels": { 
      "foo": "bar" 
    }, 
    "annotations": { 
      "topics": "awesome-kafka-topic", 
      "foo": "bar" 
    } 
  } 
] 

/system/function/<name> (GET):  

Get a summary of the deployed model <name>, with the following successful (exemplified) response. 

{ 
  "name": "mymlmodel", 
  "image": "mymlmodel:latest", 
  "invocationCount": 1337, 
  "replicas": 2, 
  "availableReplicas": 2, 
  "envProcess": "python index.py", 
  "labels": { 
    "foo": "bar" 
  }, 
  "annotations": { 
    "topics": "awesome-kafka-topic", 
    "foo": "bar" 
  } 
} 

Response code 200 is successful info retrieval, code 404 means ML model not found and code 500 indicates 
an internal server error. 

/system/logs?name=<name> (GET): 

Get a stream of the logs for the model <name>, with the response as follows. 

{ 
  "name": "mymlmodel", 
  "namespace": "", 
  "instance": "vb70z722qxblac3u9vu437cfu", 
  "timestamp": "2021-03-09T20:41:16.2652549Z", 
  "text": "2021/03/09 20:41:16 POST / - 200 OK - ContentLength: 52" 
} 

Response code 200 is successful log retrieval, code 404 means ML model not found and code 500 indicates 
an internal server error. 

 Execution 

/function/<name> (POST): 

Invoke an ML model in synchronous mode (get immediate response). The example below shows the input 
and output of a prediction model. 

{ 
  "input_a": 10, 
  "input_b": 13, 
  "input_c": 7 
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} 

With the return response reporting the output of the model: 

{ 
  "expected": 11, 
  "predicted": 10.2 
} 

Response code 200 is successful model invocation, code 404 means ML model not found and code 500 
indicates an internal server error. 

/async-function/<name> (POST): 

Invoke an ML model asynchronously, which will queue the model execution. The input format is identical to 
the synchronous ML model execution above, but the only immediate response are the REST codes (200, 404 
and 500 as above). There is no immediate model output. 

  Removal 

/system/functions (DELETE): 

Remove a model, where the model name is specified in the request body as follows: 

{ 
  "functionName": "mymlmodel" 
} 

The response codes are 200 for successful removal, 400 for a bad request, 404 for model not found, and 500 
for internal server errors. 
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5 Intent Engine  
The initial design of the 5G-CLARITY Intent Engine was described in D4.1 [1].The goal of this section is to 
revise that initial design and to discuss the used technologies and implementation details of the first intent 
engine prototype. 

Table 5-1. Intent Engine Services. 

MF Service ID MF Service name Description 
Reference 

Specifications 

IntentEngine_N
tntProv_Mgmt 

Intent Provider 
Management 

service 

For an intent to be fulfilled, it needs to be matched to an 
intent provider. This service allows the addition, updating 
and removal of intent providers for the intent engine to 
match intent descriptions against. 

Update intent providers for when intent providers change. 
Many AI models are intent providers, which may be 
updated and replaced from time to time. 

Intent providers may be removed when they are outdated 
or no longer desired. 

Custom (REST) 

IntentEngine_ 
NtntProv _List 

Intent Provider 
List service 

Lists currently registered and available providers. The list 
can be simple (names) or extended (provider names and 
supported intents). 

Custom (REST) 

IntentEngine_ 
NtntProv 
_Describe 

Intent Provider 
Description 

service 

Returns a description of an intent provider. This 
description can be simple (overview of the provider’s 
functionality), enhanced (description with overview of 
supported intents), or detailed (description of a particular 
intent and how the provider supports it). 

Custom (REST) 

IntentEngine_ 
NtntProv _Run 

Intent Execution 
service 

Runs a received intent on a provider. The provider can be 
explicitly named. When no provider is named, the intent 
engine will try to match the provided intent description 
with an existing intent provider, who executes the intent 
description. It may then return a result or run recurrently. 

Custom (REST) 

IntentEngine_N
tnt_Terminate 

Intent 
Terminations 

service 

Terminates an intent that is currently executed on the 
engine. 

Custom (REST) 

IntentEngine_N
tnt_Status 

Intent Status 
service 

Returns the status of a running intent. Custom (REST) 

IntentEngine_N
tnt_Get_Telem
etry 

Telemetry Data 
Retrieval service 

Get telemetry data from the Telemetry Collector. This 
service allows ML models to retrieve network data. 

Custom (REST) 

IntentEngine_N
tnt_Push_Confi
g 

Network 
Configuration 

Forwarding 
service 

Forward network configurations to various network 
elements (e.g. Slice Manager). This service allows ML 
models to push network configurations into the network. 

Custom (REST) 

IntentEngine_N
tnt_Mgmt 

Intent 
Management 

service 

Allows for the deployment of intents on the engine that are 
ready to be executed (run) and to remove intents from the 
engine. If the intent is currently executed, it will be 
terminated before removal. 

Custom (REST) 
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IntentEngine_N
tnt_List 

Intent List service Lists currently deployed intents. The list can be simple 
(intent names) or extended (intent names and matching 
providers). 

Custom (REST) 

IntentEngine_N
tnt_Describe 

Intent 
Description 

service 

Describes an intent. The description can be simple 
(overview of the intent) or detailed (explaining all details of 
the intent) 

Custom (REST) 

 

5.1 Consolidation of intent engine design 
This approach takes the architectural overview of the 5G-CLARITY Intelligence Stratum with modifications to 
the representation of components from the perspective of a practical usage scenario. The intelligence 
stratum is functionally similar to an intent-driven, AI supported controller with monitoring capabilities. For 
the sake of simplicity, let it be ‘intelligent controller’ in the rest of this section.  

 
Figure 5.1. Architectural overview of the intelligence stratum 

Intents are specified by the network operator. The supporting AI models (and algorithms) are designed by 
an ML modeler. Intents are taken by the “Intent Engine”, which serves as the central coordination 
component. The AI modules provide the machine learning intelligence to deal with intent presented by the 
network operator. The Intent Engine can then use the 5G-CLARITY Service and Slice provisioning subsystem 
to realize (often also called enforce) configuration decisions. This subsystem in Figure 5.1  represents any 
target MF responsible for realising the request detailed in the intent message. For example, an intent 
requesting the reconfiguration of a slice (or network service or transport network) means the target MF is 
the Slice Manager (or the NFVO or the SDN controller). Once an intent has resulted in a configuration, the 
underlying managed system can be monitored. Information about the network comes from the 5G-CLARITY 
Data Processing and Management subsystem, either from Data Semantics Fabric or Data Lake. This result in 

Network Operator ML Modeler

Intent Dashboard

Intelligent Controller

Intent EngineML 
Module

AI Engine

ML 
Module

ML 
Module...

Provider Provider

Service and Slice 
Provisioning Subsystem

Data Processing and 
Managemnet Subsystem
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a 4-step process. 

The first step is the injection of an intent into the “Intent Engine”. This communication is typically between 
the “Network Operator” and the “Intent Engine”; however the source of the intent message can also be an 
internal component within the 5G-CLARITY system through the “Intent Engine” REST interface.  This should 
be facilitated by an interface that drastically simplifies intent expressions, an example is shown in Section 
5.2. Close to natural language would be preferable, to minimize any required training of the network 
operator’s personal. An intent here could be for instance “create a new RAN slice with 4 RAN nodes, 2 Wi-Fi 
nodes, and 1 Li-Fi node; add a core network for all users of factory X”. This intent can be encoded using the 
language and the encoding examples shown in Section 5.2. The Intent Engine receives the intent, stores it in 
a local (runtime) store, and validates if an appropriate ML module is available to deal with the intent. 
Optionally, this can be supported by a translation of the original intent into an intermediate format, which 
is designed to capture all ML modules. Once the intent is translated and an appropriate ML module is 
selected, the Intent Engine can send this new intent to the ML module. 

The second step is the communication between the Intent Engine and the ML modules. As stated above, a 
new intent is created and sent to a selected ML module. This module runs its algorithm. For a pure runtime 
system, this will require a fully trained ML model. The outcome of an ML module should be detailed 
instructions for the “Intent Engine” on what it must do next. These instructions can be again described as an 
intent, or a configuration template, or otherwise. If a ML module is not selected the “Intent Engine” will 
search for internal information specific to the intent request. If the “Intent Engine” cannot identify the 
appropriate next steps a message is sent to the issuer of the intent informing them of the problem. In a 
scenario where a ML module requires information from Telemetry in order to generate an action the “Intent 
Engine” needs to be provided the location of the telemetry data so it can be retrieved. The information is 
then forwarded to the ML module.  

The third step is the communication between the Intent Engine and the 5G-CLARITY. Once the Intent Engine 
receives its detailed instructions, it may take them directly (if appropriate) or translate them for a selected 
MF. Translation should be the preferred method here to decouple the ML modules from orchestration details. 
The MF can be for instance a slice manager, a use case for which is described in Section 5.3.1. Once the 
instructions are sent to the MF, the Intent Engine will also need to register data that should be monitored 
until the original intent is either fulfilled (automatically terminated) or until the original intent is undeployed 
(manually removed by the network operator). The utilisation of continuous loops to provide assurance in the 
scenario of a prolonged intent are described in D4.1 [1], Section 7.2.2.  

Finally, the fourth step is the communication between the Data Management and Processing subystem and 
the Intent Engine. Independent of the second step where the Intent Engine retrieves information to feed a 
ML module, in this scenario monitoring data is requested by the Intent Engine. The monitor sends data to 
the Intent Engine. The engine now can check if any of the data is associated with an intent that had resulted 
in a configuration. If so, it can negotiate with the original ML module to jointly decide if the new data violates 
the original intent, and if thus a new configuration or a configuration update needs to be created and issued 
to the MF. 

The rationale above shows a simple way to build the Intent Engine. The 4-step process requires three state 
machines inside the intent engine. We can call the state machines S1, S2, and S3. The state machine S1 will 
take an operator’s intent as input, translate it into an intermediate intent, select a deployed ML module that 
is able to handle the intermediate intent, log all this information in the local store (to create traceable history 
and to store state information about processed intents), and then send the new intent to the selected ML 
module. This state machine can only be triggered by deploying a new intent, and it terminates once a new 
intent is sent to an ML module. However, if an ML module is not selected to handle the intent the system 
moves to the next state with just the original intent information. 
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Figure 5.2. Intent Engine concept  

The state machine S2 takes as input an intent (or detailed instructions) from an ML module, relates this to 
an original intent (from the local store), selects an MF, optionally translates the instruction into what the MF 
understands, sends the translated instructions to the MF, associates monitoring events to the intent to allow 
for effective assurance during the monitoring phase, and stores all process related information in the local 
store under the original intent. This state machine can only be triggered by an ML module, and it terminates 
once instructions are sent to the MF. 

The state machine S3 receives monitoring data from the 5G-CLARITY data processing and management 
subsystem. It then determines if the data is associated to an original intent. If it is, the local information of 
the original intent will point to the ML module that has created the original detailed instructions. The state 
machine can now, jointly with this ML module, decide if the new monitoring data represent an intent 
violation and if any actions are required. If actions are required, the second state machine S2 can be triggered 
to generate a new configuration or a configuration update. 

Figure 5.2 shows the intent engine as a container executing any number of state machines. As described 
above, we can realize the whole intent coordination with three independent state machines, each realized 
as a sequential machine (or a tree in case of more complex local states). No loop in the state machines is 
required, since they are all part of a closed control loop system already. Input to the engine are intents and 
monitoring data (not shown in the figure). The “Intent Providers” represent the ML modules and the MF. 
The state machines will also create reports stored locally, which can be send to any interested component 
outside the controller. This might be interesting in case of intent fulfilment, but also to provide monitoring 
information about the Intent Engine and its state machines to higher-level processing systems, e.g., an OSS 
or a BSS. 

The Intent Engine can be implemented using any system or environment that can implement state machines. 
One candidate is the policy engine APEX [27], which in fact is a generic state machine executor. Here, each 
of the described state machines S1-3 could be realized as an APEX policy, and all of them in combination be 
embedded into an APEX Policy Model. In a simpler way, each state machine could also be implemented in 
form of imperative logic, coordinated objects, or functional. 

The Intelligent Controller can be extended by adding more ML modules, other MFs, or more sophisticated 
Telemetry components. In a simple implementation, this will require to add logic to the intent state machines, 
to deal with the new artifacts. However, the whole system can also be designed in a model driven way. Here, 
an ML module that is added to the system would provide all information, as a model, to the Intent Engine: 
supported intermediate intents, supported original intents, monitoring data associated with the 
functionality, MFs and translations to them that support the functionality, and even details for the GUI to 
present the new functionality to the network operator. In this case, the state machines in the Intent Engine 
can be implemented generically, following the same process using the modelled information.  
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  South-bound interfaces  

This section provides details on the southbound interactions of the intent engine.  

 Slice and Service Provisioning Subsystem 

Communication between the Intent Engine and this subsystem is handled over REST. Instructions derived 
from the intent request or produced by the AI Engine are translated into requests executable over the Slice 
Manager REST API. Acknowledgement of these requests are validated to ensure the successful execution of 
the Intent Engine. Functions described in the documentation of the Slice Manager API are built in the latter 
parts of the Intent Engine execution cycle. Parameters provided in the intent message are used to populate 
required fields for generated request calls. 

 Data Processing and Management Subsystem 

Communication between the Intent Engine and Telemetry is yet to be finalised. The most likely interfaces 
are over REST or Kafka. More information may be found in Section 2.2. Two approaches have been 
considered for the interaction between Telemetry and the Intent Engine. The first treats the Telemetry 
resource as an intent provider in which case a data request is packaged by the Intent Engine and on receipt 
of the data, returns the response to the intent issuer. Alternatively, there is a mechanism available to ML 
Modules to interact with Telemetry directly. In this scenario the Intent Engine would provide the location of 
the requested data to the ML Modules allowing them to pull the data directly. 

  North-bound interfaces  

The northbound interactions of the intent engine are limited to exchange of request-response messages to 
the intent issuer dashboard. Intents will be issued through a dashboard using a Kafka messaging system to 
communicate with the Intent Engine. The dashboard provides an intent message template containing Intent 
Engine specific information alongside editable fields expecting Intent Language compliant syntax in the YAML 
or JSON format. Figure 5.3 illustrates an example of this YAML/JSON encoded intent language.  

The above-referred approach constitutes a straightforward starting point for intent representation in the 
system. As the Intent Engine matures different mechanism such as Natural Language Processing can be 
incorporated to allow for flexible representations of the intent message. 

 

 
Figure 5.3. Intent language. JSON (left) and YAML (right) 
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Figure 5.4. Example of APEX output information used to deploy ML module 

 East-/west-bound interfaces  

This section captures the east/west bound interactions of the intent engine. These interactions correspond 
to the exchange of information and request-response messages with the other functional component within 
the 5G-CLARITY intelligence stratum: the AI engine.  

 Intent Engine → AI engine 

The Intent Engine will communicate with the AI Engine through the REST API defined in Section 5.1.1.1. This 
is predominantly utilised when a ML module is selected as a result of processing a received intent. However, 
is also used in the scenario where an ML module is the “Intent Provider”, that is when the intent requests 
information specifically generated by an ML module. 

When an intent is received, the Intent Engine queries internal context for information related to the 
functions of ML modules currently available in the AI Engine. If a ML module is associated with the 
parameters of the intent message, a REST request is sent to invoke the ML module. The response of this 
request is then used to inform the parameters of the generated action to fulfil the intent request. An example 
of this output is shown in Figure 5.4. 

 AI Engine → Intent engine 

The northbound interface of the Intent Engine is accessible to ML Modules running inside the AI Engine. This 
allows ML Modules to generate a number of requests informed through interactions with Telemetry to 
produce a context aware change in the system. Requests generated by ML Modules follow the same process 
as any request received on the northbound interface. 

It is possible to implement a modelled machine-to-machine interface for ML modules to communicate with 
and the Intent Engine. However, this would contrast the dynamic and flexible building of interactions 
between the Intent Engine and Intent Providers. 

5.2 Intent engine – functional validation  

  Intent Dashboard 

Intent Dashboard will communicate with an Intent Engine. The dashboard will provide fields with default 
values specific for the Intent Engine. The message field expects Intent Language compliant text detailing the 
intent. A radio button is provided to specify the syntax (YAML or JSON) used in the message text area. An 
example of the Intent Dashboard is shown in Figure 5.5.  
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Figure 5.5. Intent dashboard 

The Intent Dashboard uses Kafka to send intents to the Intent Engine. When the Send button is triggered a 
Kafka producers sends the message to the Kafka cluster where it is then forwarded to the Intent Engine. 
However, as the Intent Engine supports both Kafka and REST interfaces on the consumer side users are free 
to develop their own mechanisms for sending intents using these interfaces. 

 Intent Matching 

One big challenge in intent-based networking is translating the user generated intent (natural language) into 
a concrete executable network function. The approach used here is to employ natural language processing 
(NLP) to match the given intent with available network functions that are registered in the Intent engine. The 
NLP model determines the semantic similarity between the user input and the functional description of each 
network function. The functional description can come from the documentation that describes the various 
available network functions (e.g., through an API description like Swagger6) or have been provided manually 
during the registration of the function in the intent engine. 

FastText provides the capability to compare the semantic similarity between the intent message and the 
description of functions. FastText is an open-source, free, lightweight library that allows users to learn text 
representations and text classifiers [28]. It is executable on a wide variety of platforms and models can be 
reduced to fit on small devices. 

Opensource pre-trained models are available in a wide variety of languages, the model used in this 
implementation is trained on English Wikipedia data using fastText. These vectors in dimension 300 were 
obtained using the skip-gram model described in [29] with default parameters. Word vectors come in both 
the binary and text default formats of fastText. In the text format, each line contains a word followed by its 
vector. Each value is space separated. Words are ordered by their frequency in a descending order. 

The main principle behind FastText is that the morphological structure of a word carries important 
information about the meaning of the word. Such structure is not taken into account by traditional word 
embeddings like Word2Vec, which train a unique word embedding for every individual word. This is 
especially significant for morphologically rich languages (German, Turkish) in which a single word can have a 
large number of morphological forms, each of which might occur rarely, thus making it hard to train good 
word embeddings. 

 
6 https://swagger.io/  

https://swagger.io/
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FastText attempts to solve this by treating each word as the aggregation of its subwords. For the sake of 
simplicity and language-independence, subwords are taken to be the character ngrams of the word. The 
vector for a word is simply taken to be the sum of all vectors of its component char-ngrams. FastText can 
obtain vectors even for out-of-vocabulary (OOV) words, by summing up vectors for its component char-
ngrams, provided at least one of the char-ngrams was present in the training data. 

According to a Gensim documentation, fastText does significantly better on syntactic tasks as compared to 
the original Word2Vec, especially when the size of the training corpus is small. Word2Vec slightly 
outperforms fastText on semantic tasks though. The differences grow smaller as the size of the training 
corpus increases. 

The primary benefit of fastText in this application is a robust similarity evaluation mechanism that provides 
consistent results when processing acceptable ambiguity in intent requests 

The fastText library modules used in the implementation allow training word embeddings from a training 
corpus with the additional ability to obtain word vectors for out-of-vocabulary words. This module contains 
a fast native C implementation of fastText with Python interfaces. It is not only a wrapper around Facebook’s 
implementation. This module supports loading models trained with Facebook’s fastText implementation. It 
also supports continuing training from such models. 

Once you have a model, you can access its keyed vectors via the model.wv attributes. The keyed vectors 
instance is quite powerful: it can perform a wide range of NLP tasks. Intent requests that are forwarded to 
the system parse the content through a pre-processing function to prepare the data. This data is then 
compared using n_similarity function of the fastText wordvector. 

The output of this system lists a similarity score for each description in comparison to the provided intent. 
Based on parameters set by the Intent Engine the output can be capped to the top n scores to reduce the 
size and time need to process the requests. 

Figure 5.6 exemplifies the mapping between user-generated intent and the available network functions that 
are known to the Intent engine. In this (simplified) example, the user wants to create a new network slice. 
The intent engine has n network functions registered, along with their description and service location 
(URL). The task of the intent matching module is to find the closest match of function to the user’s intent. 
In this example, the intent “I want to create a slice” is matched to the function/service that is located at 
http://slice-manager/create.  

 
Figure 5.6. Intent matching using ML/NLP 

http://slice-manager/create
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5.3 Target use cases  
This section provides information on the targeted use cases of intent-based slice provisioning and telemetry. 
The slice provisioning and telemetry use cases were chosen for implementation due to the required 
capabilities aligning with early implementation goals of the intent engine. The slice provisioning use case 
requires both intent matching and action translation capabilities provided by Natural Language Processing 
and the functional descriptions of “Intent Providers”. The telemetry use case aims to provide more 
information to the practical interaction between the Intent Engine and Data Lake.   

 Intent-based slice provisioning  

During operation the Intent Engine may need to engage with the Slice Manager as an “Intent Provider”. This 
can be triggered through an intent message requesting functionality of the Slice Manager. On receipt of an 
intent message the Intent Engine first consults internal functionality templates for the descriptions of 
functions. When an “Intent Provider” is registered with the Intent Engine it will provide its functionality 
template. The functionality template allows an action to be associated with the Intent Message through the 
descriptions of functions. Once the function is identified an internal action builder is instantiated to build the 
Intent Engine output compliant with the interface of the “Intent Provider”. 

In this scenario an intent message would request “a new compute node chunk”. This will trigger the intent 
matching stage of the Intent Engine where descriptions are matched with the intent message producing a 
correlation score. This correlation score is used to identify the Slice Manager function associated with the 
intent request. The functionality template of the Slice Manager is then used to build the identified function 
generating an action, in this case Intent Engine would build a REST request of the Slice Manager API. This 
action is then sent to the Slice Manager.  

For testing purposes, we have developed a mock slice manager as an ML module with straightforward 
endpoints inspired by Slice Manager API documentation. These endpoints are shown in Figure 5.7. Based on 
this we have developed a use case for intent driven creation of Openstack projects as compute node chunks. 
An Intent is sent from the Intent Dashboard to the Intent Engine. On receipt of the intent message the Intent 
Engine triggers a request of all the Functionality Templates stored on the engine. Each description field is 
extracted and sent with the intent message to Intent Matching. Here text distancing is performed on the 
collected descriptions returning a score from 0 to 1 based on the similarity of function descriptions to the 
intent message.  

 
Figure 5.7. MySliceManager Mockup 
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Figure 5.8: Intent Engine Slice Manager Use Case 

The highest scoring description is then cross referenced against to Functionality Templates identifying the 
template and path to the correlated function. This information is then forwarded to the Action Builder which 
identifies the appropriate interface for the Slice Manager and the mechanism for building the Intent Engine 
output. The full use case is shown in Figure 5.8. 

 Telemetry  

During operation an instance may occur that requires the Intent Engine to retrieve data from the data lake. 
This can be triggered in two ways, either through a ML Module requesting data or through an Intent request 
for specific data. 

A ML Module inside the AI Engine may require external data for its execution. In this scenario the ML Module 
states the information required for its execution to the Intent Engine. At this point there are two mechanisms 
available to retrieving information from the data lake. The Intent Engine can request the data and pass it 
directly to the ML module or the Intent Engine can request the location of the required data and pass that 
to the ML Module which would then be responsible for retrieving the data. The interfaces used in this 
scenario are described in Section 2. 

In a scenario where a data request is triggered through intent explicitly, the Intent Engine will behave similar 
to if a ML Module had made the request. This results in a request being forwarded to the data lake and the 
result would be packaged into the response body of the Intent message.  

We have developed a temporary data lake mock-up as an ML Module called “MyDataLake” to demonstrate 
the interaction. “MyDataLake” accepts a key value pair and returns the values requested in the response 
body. The endpoints of the mock-up are shown in Figure 5.9. 
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Figure 5.9: MyDataLake Mockup  

 

 
Figure 5.10: Intent Engine Data Lake Use Case 

An intent is sent from the Intent Dashboard to the Intent Engine. This triggers the same behaviour described 
in Section 5.3.1 leading to the identification of the ML Module as the Intent Provider for this scenario. After 
triggering the ML Module, the Intent Engine is alerted to a request for data from the ML Module. This triggers 
a pass-through mechanism in the Intent Engine which forwards the data request to the Data Lake Mock-up. 
When the data is received the Intent Engine retriggers the ML Module with the requested data attached. 
The full use case is shown in Figure 5.10.  
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6 Private-Public Network Integration  
Private-public network integration is one of the main distinguished features of the 5G-CLARITY system. It 
represents the ability of the 5G-CLARITY assets (i.e., on-premises resources) to communicate and interwork 
with the MNO’s managed PLMN domain, thereby allowing a seamless operation of PNI-NPNs. The enablers 
of this feature were first discussed in deliverable D2.2 [2], Section 9, where the project’s consortium gave an 
insight on the integration of public and private networks in 5G-CLARITY system, throughout different 
deployment scenarios and an analysis on their interaction at the management and orchestration stratum. 
This integration was also accompanied with security mechanisms, so that privacy and trustworthiness 
between the corresponding administrative domains can be ensured.  

According to the T4.2 objectives committed in the DoW, D4.2 shall capture a first solution design of the 
enablers allowing for this public-private network integration. For the activities with regards to these enablers, 
three workstreams have been defined: i) management capability exposure; ii) public-private network 
connectivity, and iii) Intelligent stratum integration. The initial outcomes from these workstreams are 
captured in the different subsections defined in this chapter.  

6.1 Management Capability Exposure – Initial solution design  
Management capability exposure can be defined as the ability of a NOP to securely expose capabilities from 
their managed functions towards one or more authorized tenants. This mechanism provides means to 
establish a clear demarcation point between a private NOP (i.e., 5G-CLARITY system operator) and public 
NOP (e.g., MNO), defining their individual management scope in the operation of PNI-NPN. For a fine-grained 
control of this exposure, 5G-CLARITY system leverages the use of Mediation Function (Section 6.1.1). The 
token-based authentication and auditability features provided by the 5G-CLARITY mediation function allows 
for the definition of different service delivery models, each adapted to the specificities of each use case 
(Section 6.1.2). 

 Mediation Function  

As described in deliverable D2.2 [2], the Mediation Function provides a single-entry point to the 5G-CLARITY 
Management and Orchestration stratum for external consumers. These consumers include i) MFs from the 
3GPP management system of a public NOP; and ii) services from the intelligence stratum, when hosted off-
premises (e.g., 3rd party cloud node). From a conceptual viewpoint, the mediation function acts as a 
combination of Unified Data Repository (UDR) and Network Exposure Function (NEF) functionalities as 
defined in the 5GC, policing what external consumers are allowed to access in each MF service defined in 
the 5G-CLARITY Management and Orchestration stratum, and how much information and capabilities they 
can get from this MF service, using its exposed APIs.  

 
Figure 6.1. 5G-CLARITY mediation function 
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Figure 6.1 illustrates the initial design of the 5G-CLARITY mediation function. In this first design, the following 
internal modules are considered:  

• API Gateway (mandatory), which is the front-facing service for 5G-CLARITY management and 
orchestration stratum, enforcing policies and access control between MFs and external consumers.  
As the entrance of the mediation function, all requests shall go through the API gateway to the 
specific MF service.  

• API Portal (mandatory), which has an informative role for external consumers. The portal describes 
what APIs are available for usage, listing them all and providing a description for their consumption: 
API endpoint (e.g., IP address, Fully Qualified Domain Name [FQDN]), API lifecycle information, 
eligibility to be the consumer of the API, API health insights (e.g., real-time monitoring), etc. The 
documentation on the portal should also provide the authentication and authorization mechanism, 
use cases that describe the business context and live real implementations.  

• API orchestration (optional), which is a MF service responsible for consuming service bus exposed 
APIs (i.e., APIs offered by the different 5G-CLARITY management and orchestrated MFs) and apply 
transformation operations on them, if needed (e.g., for making them more user-friendly for some 
tenants, for adapting them to the intelligence stratum). Notice this transformation is optional – its 
application is dependent on use case. Examples of this transformation include stage 3 translation 
(e.g. XML↔JSON, SOAP↔REST) and protocol transformation (e.g. HTTP→HTTPs). Once transformed, 
these APIs can be securely exposed through the API gateway.  

• Supporting services, which are MF services that support the operation of API gateways and API 
portal. On the one hand, there is a database, in charge of keeping a registry with available and 
published APIs together with their endpoints. On the other hand, there is the message system, which 
allows the exchange of internal messages on the 5G-CLARITY mediation function.  

Figure 6.2 illustrates the user story of the MF logic, showing an end-to-end consumer-to-API flow example 
passing through the API gateway, where the main policies and the access control are captured.  

 
Figure 6.2. 5G-CLARITY Mediation Function - user story 
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Figure 6.3. Access token 

The mediation function is responsible for enabling multi-tenancy support, which is an inherent feature of the 
5G-CLARITY system architecture. This feature is based on the enforcement of two functionalities: capability 
exposure (5G-CLARITY D2.2 [2],Section 9.3.1) and auditability (5G-CLARITY D2.2 [2], Section 9.3.2). 

On the one hand, capability exposure allows the mediation function to define the degree of control a 5G-
CLARITY customer (e.g., a public NOP) can take over a 5G-CLARITY managed instance, such as a PNI-NPN. For 
a fine-grained control of this capability exposure, a token-based authentication framework is used. This 
framework is based on the definition of two token types, each used for codifying a different tenancy type: 
URL token, which identifies the tenancy of the application that requests a service; and access token, which 
codifies the tenancy that is the target of such access (e.g., application tenancy) as well as the user tenancy 
that is given access. An access token includes at least a claim/statement indicating the resource tenant name 
and the time the request for the access token was made (e.g., the customer), a claim/statement indicating 
the user tenant name, a claim/statement indicating the name of the OAuth client making the request, and a 
claim/statement indicating the client tenant name. Figure 6.3 captures an example of a how access token 
can be implemented following JSON functionality.  

Based on the above rationale, when the 5G-CLARITY tenant registers into the private NOP admin domain for 
the first time using single sign-on (SSO) functionality, the tenant is granted with a unique access token. This 
token, provided by the API gateway, specifies the set of APIs that the tenant can consume at operation time. 
With this token in hand, the workflow is as follows: every time the tenant invokes an API from a MF to 
consume a given MF service, the MF checks the permissions imbued in the access token. If these permissions 
include the requested management service, then the MF authorizes the API consumption. 

On the other hand, auditing in a multi-tenant environment presents a number of challenges that broadly 
relate to providing individual tenants with appropriate visibility to audit information. One problem is that 
audit events frequently are not easily traceable back to individual tenants. Another problem is that audit logs 
are not easily disseminated to individual tenants. Moreover, the typical manner in which audit logs are 
generated and stored does not support the ability to prove that tenant information is compartmentalized. 
One approach to address these problems involves augmenting audit APIs in a cloud operational environment 
(either virtualized or cloud-native) so that logs are annotated with an identifier for each tenant. This 
approach, while technically feasible and useful, requires changes to software components in the cloud 
environment to enable them to take advantage of these audit services. The high development cost and 
change management impact may make this approach less competitive in terms of time-to-market, which has 
a direct impact on the short-/mid- term validity of 5G-CLARITY solution.  

Tthere remains a need to provide a multi-tenant audit solution that enables 5G-CLARITY mediation function 
to provide audit trails with a single tenant audit view and that sufficient proof that audit information from 
the tenant is not being leaked between or across tenants. This solution shall allow the generation of clear, 
original (unchanged), verifiable and accurate audit trails for the interplay of private NOP with the public NOP, 
ensuring traceable and secure interactions across them, at both orchestration and control levels. The 
messages exchanged between these two administrative domains, including request-response and subscribe-
notify messages, need to be logged with accurate timestamps and support non-repudiation.  
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Table 6-1. Example of 5G-CLARITY Audit Trail 

Audit Trail Field Description 

action The type of operation performed (e.g., request-response, notify-subscribe-
unsubscribe) 

callSize The size of the call 

callerId A unique identifier of the caller 

callerIpAddress The IP address of the caller 

beginTime Data time of when the operation started (ISO format)  

endTime Date time of when the operation ended (ISO format) 

httpMethod The HTTP method: [GET/DELETE/PUT/PATCH] for request-response type action, 
and POST/DELETE for notify-subscribe-unsubscribe type action 

httpStatus The HTTP status 

httpUrl The HTTP URL called 

resourceId A unique identifier of the resource accessed 

resourceClass The class of the resource accessed (e.g., if resource accessed corresponds to a 5G-
CLARITY compute service, then resourceClass points to the corresponding NSD).  

 

In 5G-CLARITY system, we propose a solution based on storing audit trails on a centralized, SQL database on 
every administrative domain involved. Table 6-1 captures an example on the schema of a potential audit trail. 
These audit trails may be fetched and checked by corresponding administrators, which might be the NOPs 
themselves (e.g., use audit trails to monitor and gather data about specific database activities, detect security 
breaches), or even a 3rd party (e.g., uses audit trails to address auditing-related requirements for compliance, 
such as the European Union Directive on Privacy and Electronic Communications). To illustrate the use of the 
Mediation Function, we next provide, as an example, an operation that is executed in a multi-domain 
scenario where the NFVIaaS model is used. Specifically, the two administrative domains correspond to an 
MNO and a private operator relying on the 5G-CLARITY architecture. Further details of this operation can be 
found in [69], as well as in Section 6.1.2 of this document. This operation supports the orchestration of 5G-
CLARITY compute services by an external organization. To achieve this, the ETSI NFV MANO stack is deployed 
in both domains and interconnected. The interaction between the two entities is supported by the Mediation 
Function, which acts as a proxy to manage the operations. 

Figure 6.4 shows the process of a composite NS instantiation across the two administrative domains. As 
explained in Section 6.1.2, a composite NS is composed of multiple nested NSs, which can be deployed in 
different administrative domains. First, the 5G-CLARITY’s NFVO registers their services in the Mediation 
Function. To consume such services, the MNO’s NFVO interacts with the Mediation Function which carries 
out the authentication and authorization process and generates the access token that is delivered to the 
MNO. Suppose that the MNO wants to create an instance of a given composite NS. The MNO’s OSS sends 
the creation request to its NFVO, where it is processed. Then, the MNO’s OSS sends the instantiation request 
to its NFVO. The NFVO finds the corresponding NFVO (i.e., the 5G-CLARITY’s NFVO) from the mapping <NSD, 
NFVO> and sends the request for creating a nested NS to the Mediation Function in the domain of the private 
operator. The authorized request is transferred to the NFVO in this domain and logged in the audit database. 
Note that the audit database may belong to any of the participant domains. A similar process is applicable 
to the instantiation request for the nested NS. In case of successful nested NS instantiation, the 5G-CLARITY’s 
NFVO sends a notification to the Mediation Function, which transfers it to the MNO’s NFVO and logs it in the 
audit database. If the composite NS comprises VNFs as part of it, the NFVO performs the VNF instantiation 
procedure and connects the constituent VNF instances and nested NS instances. Finally, in case of successful 
instantiation for the composite NS, a notification is delivered to the MNO’s OSS. 
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Figure 6.4. NFVIaaS-related operation through the Mediation Function (MED-F). 

 Service delivery models  

The aim of this section is to discuss how the service delivery models introduced in 5G-CLARITY D2.2 and the 
associated management models (MMs) described in 5G-CLARITY D4.1 can be applied to the use cases, UC1 
and UC2.1, presented in 5G-CLARITY D5.1 [70]. The MMs represent different ways of managing the exposed 
services according to the service delivery models, WATaaS, NFVIaaS and SlaaS. The logic behind these MMs 
is that higher levels of management provide the customer with more advanced management capabilities, 
including those capabilities offered by lower levels. The interested reader is referred to 5G-CLARITY D4.1 for 
a better understanding of the definition and notation used for each defined 5G-CLARITY MM. 

The MMs can be applied in a different way depending on the deployment scenario and the potential 
interactions between public and private operators. In 5G-CLARITY D5.1 [70], an introduction is provided to 
the Smart Tourism and Industry 4.0 use cases, where the services can be deployed over standalone NPN or 
PNI-NPN. In the latter approach, the role of the public operator is key to support these services. By following 
this approach, the Smart Tourism pilot (UC1) would benefit from the multi-tenancy support, enabling on-
demand services such as public safety systems and third-party special events (e.g., conferences, seminars, 
etc.). In the case of the industry 4.0 pilot (UC2), the PNI-NPN approach would improve the in-factory 
connectivity relying on network infrastructure (e.g., the 5G core) provided by the public operator.  

Next, we specifically analyse the benefits and limitations of applying the different service delivered models 
and MMs to each use case. In addition, some guidelines are provided for future experiments in the pilots. 
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 UC1: Smart Tourism 

5G-CLARITY UC1 aims at enabling enhanced human-robot interaction as-well-as providing infrastructure 
slicing for third party services such as public safety and private events production. The use case will 
demonstrate the benefits of 5G-CLARITY Framework which combines E2E slicing, multi-WAT, and the PNI-
NPN support. Three narratives are envisioned to be deployed, a multi-WAT on a standalone NPN deployed 
to support human-robot interaction and two PNI-NPN scenarios supported by E2E slicing. The UC1 
deployment might support NFVIaaS, WATaaS, and SLaaS delivery models with 5G-CLARITY Infrastructure 
stratum. 

NVFIaaS service delivery model: In the UC1, demos for narratives 1 (standalone NPN), 2 and 3 (PNI-NPN) 
may allow three MMs to create, instantiate, and onboard VNFs for nested NS between an MNO and the 
private NOP. Figure 6.5 introduces the overview of the NFVIaaS delivery model for a nested NS considering 
UC1 narratives 2 and 3. The MM applicable here are the following: 

• NFVI.MM1, with limited access to telemetry for FCAPS only allowing the MNO or tenants to upload 
the software image and VNFD/NSD for the UPF to a repository in the 5G-CLARITY edge cluster 

• NFVI.MM2, which allows the capability to create VNF/NS by requiring a connection between private 
NOP’s NFVO (M-Shed Museum) and MNO NFVO (5GUK Test Network). In this example the 
VNFD/NSD can be used to host UPF 

• NFVI.MM3, which includes secure connection between the private NOP’s VIM through the MNO’s 
NFVO to manage the VNF/NS lifecycle and control the 5G-CLARITY compute quotas to allocate 
additional functions in case the performance of the real time video streaming requires to maintain 
the 360-degree camera or guide robot APIs (e.g., UC1 Narrative 2). Finally, the NFVO on the private 
NOP will create the VNF to onboard UPF and the VIM will allow the NS cycle to be controlled by the 
MNO NFVO.  

WATaaS service delivery model:  As NFIaaS, WATaaS can be allocated to setup the MNO wireless coverage 
for visitors.  To do thiss, the private NOP and MNO will setup a connecting through a gateway to a dedicated 
VLAN or network slice (defined by a set of S-NSSAIs) associated to WAT (Wi-Fi and/or Li-Fi) and/or 5G-RAN-
functions of the 5G-CLARITY RAN cluster. This service delivery requires WAT.MM1 over an infrastructure 
slice. Figure 6.6(a) introduces the setup planned for the UC1 in which a standalone 5GC hosted by the private 
NOP is used to provide or extend WAT services of an MNO. In this example the WAT.MM1 (OM-SL: MNO 
manager with private NOP slice manager) will generate a request from SL-No RT-RIC to allocate S-NSSAIs 
(VLAN-ID, PLMN ID, and SSIDs) to the WAT infrastructure of the Museum. This example can be replicated in 
standalone NPN or PNI-NPN deployed in Airports, Malls, and other private premises to enhance WAT 
coverage of MNOs.  

SLaaS service delivery model: In the UC1 narratives 2 and 3 the management SL.MM1, 2, and 3 are provided 
to the surveillance services and special event services in coordination with the MNO, both requiring low 
latency and high throughput video and content delivery. Figure Figure 6.6(b) presents the SL.MM1 
(WAT.MM1 exposure (S-NSSAI) and NFVI.MM1 exposure) that must be enabled in the UC1 narratives 2 and 
3 deployments to create or onboard VNFs (NSSAI LCM + VNFD/NSD). In the case, UC1 narrative 2 for 
surveillance systems requires the control over the NS lifecycle, as a result SL.MM2 and SL.MM3 exposure 
must be ensured. For the case of the special event provider of narrative 3 the SL.MM1 might be enough. As 
a results SLaaS presented will be the next level WATaaS in which MNOs and Service providers can slice larger 
capacity of the NPN infrastructure through infrastructure slices. 
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Figure 6.5. NFVIaaS in UC1.  

 

 
Figure 6.6. WATaaS and SLaaS in UC1. 

 UC2: Industry 4.0  

5G-CLARITY UC2 aims at improving the in-factory connectivity, replacing current Ethernet wired connections 
by an innovative multi-WAT environment. One of the envisioned deployment scenarios consists of a PNI-
NPN based on a PLMN-provided 5GC and public SIMs for 5G-CLARITY CPEs. This scenario may reduce the 
entry barrier for some verticals interested on deploying NPNs. Depending on the distribution of NFs between 
the public and private administrative domains, some service delivery models are more appropriate than 
others for the provision of private services. Next, we analyse the implementation of the 5GC in this scenario 
where a specific service delivery model and associated MMs can be applied. One of the main challenges in 
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5G-CLARITY UC2 is the need to cope with the stringent requirements of URLLC services. In this case, the UPF 
is deployed inside the private venue to process delay-sensitive traffic, while the 5GC-CP resides in the MNO 
infrastructure footprint. The NFV orchestrator on the MNO side has to instantiate the VNF that executes the 
UPF. To do this, the NFVIaaS model is the appropriate service delivery model whereby a virtual infrastructure 
is made available in the form of dedicated compute resource quotas for VNF hosting. 

As shown in Figure 6.7, the UPF is deployed on the 5G-CLARITY edge cluster located in the technical room. 
This network function aims at processing the traffic coming from each production line. To limit the resources 
available to each UPF instance (there can be several production lines) and to provide the required isolation, 
5G-CLARITY compute quotas are assigned to the Virtual Deployment Units (VDUs) hosting the UPF instances. 
The UPF is kept separated from the 5GC CP, which remains on the MNO side. 

While the role of the private NOP is to configure the access nodes to support the 5G-CLARITY services and 
establish wireless quotas, the MNO is responsible for instantiating the UPF(s) on the edge cluster following 
the NFVIaaS model. There are three different MM levels, referred to as NFVI.MM1/2/3, which can be applied 
in this scenario depending on the desired capability exposure. The NFVI.MM1 includes limited access to 
telemetry for FCAPS and it allows the MNO to upload the software image and VNFD/NSD for the UPF to a 
repository in the edge cluster. The NFVI.MM2 extends this capability exposure by enabling the management 
of the lifecycle of VNF/NS. This MM level requires a connection to the private NOP’s NFVO so that, for 
example, the VNFD/NSD for the UPF can be on boarded. Lastly, the NFVI.MM3 includes a connection to the 
private NOP’s VIM through the MNO’s NFVO to have increased capability to manage the VNF/NS lifecycle 
and control the 5G-CLARITY compute quotas assigned to the different production lines.  

Assuming that the private NOP is interested in outsourcing the deployment, management and maintenance 
of the 5GC, the main advantage of the NFVIaaS model is that the UPF can be deployed on premise to support 
time-critical services. The implementation of the interface between public and private domains would be 
relatively simple since there are standardized solutions as discussed in Annex A. Specifically, based on the 
existing alternatives for federated MANO-based orchestration, we next provide an analysis of the 5G-
CLARITY UC2 to support the deployment of private services across different administrative domains. Since 
the management entity that handles the 5G-CLARITY compute services is the ETSI NFV MANO, we can 
assume the same component on the MNO side to establish the peering connection. Figure 6.8 illustrates the 
deployment scheme of UC2, where the UPF is deployed inside the private venue to process the traffic of 
delay-sensitive services and the 5GC CP is kept in the MNO infrastructure footprint.  

 

 
Figure 6.7. NFVIaaS in UC2. 
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Figure 6.8. The composite NS for supporting delay-sensitive services in UC2 

The proposed solution relies on the ETSI ISG NFV framework and consists of a composite NS involving 
multiple administrative domains. Specifically, the composite NS representing the 5GC is composed of two 
nested NS, namely the 5GC-CP and the UPF. The MNO may request the deployment of the nested NS in the 
5G-CLARITY domain (i.e., the UPF) as part of the composite NS when delay-sensitive services are required. In 
addition, it is necessary to create the virtual networks to enable the virtual links between the nested NS. To 
support these operations using the NFVI.MM2/3 of the 5G-CLARITY NFVIaaS model, the NFVOs at the two 
administrative domains can be interconnected through the Or-Or interface. In case of NFVI.MM3 is required, 
for simplicity, the connection to the VIM at the private premises can rely on a single logical point of contact. 

The proposed scheme is appropriate when the MNO infrastructure footprint and the 5G-CLARITY premises 
are deployed in remote NFVI points-of-presences (PoPs) and interconnected through a WAN infrastructure. 
In this case, the management of an NS that is deployed over multiple PoPs may negatively impact its 
performance. For example, delays in the WAN segment may degrade the monitoring of metrics/KPIs if they 
cannot be delivered on time to the NFVO. Consequently, lifecycle management decisions would not be 
properly taken, and related actions would also be delayed. For this reason, the adopted solution distributes 
the functions of the management plane in such a way that each administrative domain handles its own ETSI 
NFV MANO stack and the coordination between the NFVOs takes places via the Or-Or reference point [71], 
with SOL011 [72] as protocol interface solution. Nevertheless, the set of federation-related operations that 
can be executed may be limited by the latency requirements of the scenario.  

Solutions for NFVO-NFVO interaction is a problem that has been discussed over the past years. Annex A 
provides a summary of the takeaways of these discussions, in both standards and research projects. In 5G-
CLARITY system, where we have OSM as NFVO solution, this scenario can be achieved using the federation 
capabilities available from OSM Release SEVEN, as captured in Figure 6.9 [73]. We can leverage this solution 
to implement MANO federation for the in-project use cases, as follows:  

• Higher layer OSM is part of the public NOP’s MANO stack. This NFVO instance is deployed in MNO’s 
footprint, typically in a central cloud node.  

• Lower layer OSM is part of the private NOP’s MANO stack. This NFVO instance is deployed in 5G-
CLARITY on-premises infrastructure. As seen, 5G RAN and 5G MEC nodes represented in Figure 6.9 
correspond to RAN cluster and edge cluster nodes in the 5G-CLARITY system.  
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Figure 6.9. MANO federation using OSM (source: [73]). 

6.2 Public-private network connectivity – initial solution design  
Archetypal PNI-NPNs deployments are based on the distribution of non-public VxFs across two (or more) 
administrative domains, where at least one of these administrative domains is the PLMN. PNI-NPN scenarios 
in 5G-CLARITY are compliant with this layout, with some VxFs executed on the 5G-CLARITY node (private 
premises), and the rest hosted by an PLMN node, either central office (telco edge node) or data center (telco 
regional node) or both. To allow conveying the data, control and management traffic between the 5G-
CLARITY and PLMN nodes hosting the non-public VxFs, data networking services based on WAN technologies 
need to be set up. The provider of these connectivity services is typically the public NOP (e.g., MNO), with 
private NOP being the customer.  

This section provides an overview of the different WAN connectivity services that are valid to 5G-CLARITY, 
specifying their main features as well as fields of applicability (Section 6.2.1), and providing a comparative 
analysis among them (Section 6.2.2). This overview is complemented with a real-world example that 
illustrates the problem of realizing E2E connectivity when public and private administrative domains are 
involved (Section 6.2.3), which in 5G-CLARITY consists in translating on-premises VLAN solution to WAN 
connectivity solutions.  

 Technology solutions  

IPSec VPN 

IPsec Virtual Private Network (VPN) securely connects a number of a sites the same private network using 
Internet connectivity as the data communications network. This type of VPN is deployed between a security 
appliance or firewall at each location, ensuring a secure IPsec tunnel between sites. The LAN sits behind 
these security devices and software isn’t required on laptops, desktops, or servers to enable VPN 
connectivity between locations. VPN network topologies are available in a hub and spoke or meshed 
configuration. 

The main benefits of these types of data networking services are cost, the ability to use existing Internet 
connectivity for data transport, and easy integration of remote users with VPN software. IPsec VPN 
connectivity does have its flaws in that the QoS is not consistent due to Internet network congestion or poor 
performance.  Also, there is increased potential for network downtime if only using one Internet connection 
with no failover connectivity. IPsec VPN networks are a good choice for customers with limited IT budgets, 
many remote users, or basic applications and uptime requirements. 
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Software-Defined WAN (SD-WAN) 

SD-WAN is an emerging type of WAN technology that leverages the SDN principles of control-user plane 
separation to automatically determines the best routers to and from locations over Internet connections and 
private data networks. SD-WAN creates tunnels that are transport-agnostic, so public NOP can use Internet 
connections like DSL, cable, wireless, shared fiber, or dedicated connectivity. Private NOP can also keep 
existing private data network services (MPLS, EPL, EVPL, VPLS, etc) in addition to regular Internet connectivity. 
This helps to improve SD-WAN network performance and reliability. 

SD-WAN uses multiple tunnels to increase and optimize WAN bandwidth between different types of WAN 
technologies, a big advantage over traditional IPsec VPNs. This ensures applications have the highest QoS, 
increased WAN speeds, as well as additional network redundancy and failover. SD-WAN centralizes network 
control and traffic management over these links through a centralized controller or orchestrator. For more 
information on SD-WAN, see [74].  

VPN security is layered on top, while SDN software enables IT staff to remotely manage network edge devices 
and applications more easily. SD-WAN is a good option for businesses of all sizes and needs.  Enabling data 
networking over low-cost Internet connectivity, as well as more expensive dedicated WAN links, is a big plus. 
Increased reliability, performance, network agility are all key features of SD-WAN service, along with a 
competitive price point. 

Metro Ethernet  

Metro Ethernet is a point-to-point Ethernet data networking service connecting locations within a 
metropolitan area (MAN). Ethernet over Synchronous Optical Network (SONET) technology is used for secure 
point to point WAN connectivity. Circuit speeds typically range from 10 Mbps to 10 Gbps, with 100Gbps 
available in some metropolitan areas. 

Provider networks are Layer 2, so you have control over addressing and routing. Metro Ethernet service is 
ideal for businesses with two or more locations in a metro area that need high bandwidth connectivity with 
QoS requirements. In most cases, average costs for Metro Ethernet service tend to be low due to minimal 
distances and limited network infrastructure used to provide service. 

Ethernet Private Line (EPL) 

EPL provides dedicated point-to-point Ethernet network connectivity between two or more locations. Like 
Metro Ethernet, Ethernet over Synchronous Optical Network (SONET) is the type of WAN technology used. 
EPL circuits provide a reliable data networking service for customers with high bandwidth and low latency 
needs. A key component of EPL service is network resiliency and performance through SONET protection 
(network reroute).   

Being a Layer 2 network, addressing and routing is customer controlled. Ethernet Private Line is available 
from 10 Mbps to 10Gbps, with 100Gbps available in some locations. EPL is one of the more expensive types 
of WAN technologies due to distance-sensitive pricing and dedicated network infrastructure used. 

MPLS VPN 

MPLS VPN is a virtual private network built on top of a provider’s Multiprotocol Label Switching Network to 
provide Layer 2 or Layer 3 VPN data networking services. The topology configurations available include site 
to site, multipoint, and meshed networks. Customer data is partitioned from each other, keeping it private 
across the provider’s infrastructure. Data partitioning is created using MPLS tags rather than encryption. 

MPLS is different from other VPN data networking services due to the fact that you can prioritize traffic types 
over the MPLS provider network. This allows control over application performance (low to high QoS). MPLS 
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circuit speeds typically range from 10 Mbps to 10Gbps, with costs similar to dedicated Internet connectivity. 
MPLS networks are the current industry standard for a private data networking service, due to its superior 
performance, reliability, flexibility, and competitive pricing. 

Ethernet Virtual Private Line (EVPL) 

Also referred to as E-Line, EVPL provides point-to-multipoint connectivity over a provider’s MPLS network. 
EVPL uses Ethernet Virtual Connections (EVCs) to connect multiple locations together, as well as multiple 
services on a single User-to-Network Interface (UNI) at the host or hub site. 

EVPL is a Layer 2 data networking service utilizing MPLS tags and supporting multiple classes of service (CoS) 
for low to high QoS applications. Ethernet Virtual Private Lines are available from 10 Mbps to 10 Gbps. EVPL 
is ideal for customers looking for a reliable type of data communications network for a hub site to multiple 
remote locations. Due to shared network infrastructure and limited distance costs, EVPL pricing is not as 
expensive as EPL. 

Virtual Private LAN Service (VPLS) 

Also referred to as E-LAN, a VPLS is a data network service for multiple sites in a single bridged domain over 
a provider managed MPLS network. All sites on a VPLS network will appear to be on the same LAN, regardless 
of the location. Like EVPL, it is a Layer 2 type of data communications network that utilizes MPLS tags. VPLS 
also supports multiple classes of service (CoS) for low to high QoS application needs. Multiple types of WAN 
technologies (MPLS VPN, Internet, EVPL) are supported on a single port and circuit. 

Routing and management of the VPLS network can be done by the customer or provider. VPLS networks 
offer the ability of a meshed network config (any to any), so all sites can communicate with each other, 
increasing network continuity.  VPLS is ideal for customers looking for reliable connectivity for a hub site to 
many remote locations. VPLS speeds are usually 10Mbps to 10Gbps with pricing comparable to EVPL and 
MPLS data networking services. 

Wavelengths 

Wavelength Service is an optical data networking solution for customers requiring very large, dedicated 
point-to-point data connections.  This is ideal for business continuity, data center replication, backup 
solutions, streaming media, or very large data transfers. Applications that require low latency and high-speed 
connectivity are ideal for this type of WAN technology. 

Speeds typically available are 2.5Gbps, 10Gbps, 40Gbps, 100Gbps delivered as an optical handoff. 
Wavelength service is provisioned over a Dense Wave Division Multiplexing (DWDM) network, providing full 
Layer 1 transparency and management.  Unprotected and protected network reroute is available to ensure 
the resiliency of data network connectivity.  Wavelength service has the lowest per Gbps cost of all data 
networking services, but an overall higher price point due to large bandwidth sizes.  

  Comparative analysis 

As seen above, the selection of one or another solution depends on the targeted goal (e.g., network 
performance, reliability, security, price, application use case), which can be a bit overwhelming. To clarify 
their pros and cons, and therefore make the decision easier for public NOP, we provide a comparative 
analysis of these solutions in Table 6-2. 

Table 6-2. Data Networking Services for Data Plane Connectivity in PNI-NPN Scenarios 

Solution Topology OSI Technology Underlay QoS Cost (per BW unit) 
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IPSec PtP7, MP8, Mesh Layer 3 IP Shared Low Low 

SD-WAN PtP, MP, Mesh Layer 3-7 SDN Shared Low-Mid Low-Mid 

Metro 
Ethernet PtP Layer 2 SONET Dedicated High Low-Mid 

EPL PtP Layer 2 SONET Dedicated High High 

MPLS VPN PtP, MP, Mesh Layer 2-3 MPLS Shared Low-Mid Mid-High 

EVPL PtP, MP Layer 2 MPLS Shared Low-High Mid-High 

VPLS PtP, MP, Mesh Layer 2 MPLS Shared Low-High Mid-High 

Wavelength PtP Layer 1 DWDM Dedicated High Low 

 VLAN vs WAN data plane connectivity with 5G-CLARITY framework  

Both the 5G-CLARITY Infrastructure stratum as well Management and Orchestration stratum will enable 
slicing and orchestration through different administrative domains. Virtual local area network (VLANs) 
protocols e.g., IEEE 802.1q play an important role in the slicing of NPN and MNO transport network. A 5G-
CLARITY slice integrates VLANs to isolate traffic and apply the appropriated QoS rules. Enabling PNI-NPN 
scenarios a private or public gateway will be used to interconnect NPN with an MNO through a public NOO. 
Following the comparative technologies introduced on  Table 6-2,  the capacity and logical topology required 
to meet the services requirements either point-to-point or multi-point each technology might offers 
advantages and disadvantage for this interconnection. In this section we describe with the illustrative 
example on how 5G-CLARITY slices will use the integration between the VLAN domains of NPN and MNO will 
be integrated through a MAN/WAN transport domain managed by a public NOP to interchange control and 
data plane of each slice. The example Figure 6.10,  is a generalization for a point-to-point connectivity MPLS-
VPN.   

In this example two L3-MPLS-VPNs between the NPN and MNO are provisioned through customer edge (CE) 
nodes serving also as on-premises gateway equipment (GW) (see D2.2 [2],Section 5) and router (R) (i.e., NPN-
CE, MNO-CE) Figure 6.10(a). Each CE node is connected to the closest provider edge (PE) router enabling 
MPLS protocol NPN-CE to PE 1 and MNO-CE to PE 2.  The transport network domain of this example is formed 
by PE 1 and PE 2 and providers routers P 1, P 2, and P 3.  

The two infrastructure slices used in this illustrative example represent data plane interconnection between 
private and public networks to support service delivery models specified in 5G-CLARITY framework.  

 

 
Figure 6.10. Illustrative Example of a VLAN-WAN point-to-point connectivity of two 5G-CLARITY slices 

 
7 Point-to-Point 
8 Multi-Point 
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In particular, 5G-CLARITY slice 1 (green) provides WATaaS and SLaaS, whereas 5G-CLARITY slice 2 (red) 
provides NFVIaaS. For these two slices, the following assumptions are taken: i) 5G-CLARITY slice 1 user plane 
uses the IP private network 192.168.1.0/24; ii) 5G-CLARITY slice 2 user plane uses the IP private network 
192.168.2.0/24; iii) control plane of both 5G-CLARITY slices uses the IP private network 192.168.0.0/24; iv) 
private NOP and Public NOP encapsulate control plane traffic from slice 1 on VLAN 1 and from slice 2 on 
VLAN 2, respectively. 

For the sake of understandability, let’s focus on details about the 5G-CLARITY slice 1: 

• VLAN domain NPN:  Layer 2 control encapsulated into VLAN1, and IP data traffic encapsulated on 
VLAN 10, are switched from the L2 switch of the RAN cluster connecting the 5G DU/CU to an on-
premises gateway (GW) virtual ports 1 (VLAN 1) and 10 (VLAN 10) of the NPN-CE nodes.  

• VLAN domain MNO: Layer 2 control traffic is recovered from the MNO-CE/GW virtual port 1 to be 
encapsulated as VLAN 1 and the IP data plane traffic recovered from the MNO-CE/GW virtual port 
120 is encapsulated in the VLAN 120. Both L2 VLANs traffic are switched from the MNO-CE to the 
Edge Node hosting the 5G-CP. 

• MAN/WAN transport domain: a L3-VPN is provisioned, based on the QoS (latency and throughput) 
required by slice 1 and network resources available in the transport network domain (Figure 6.10(b)). 
In this example a shortest path with the lowest latency is obtained by a routing protocol or by adding 
a static route between NPN-CE to the MNO-CE (Green line). The MPLS protocol will allocate label 
following the shortest path, to switch L2 traffic from PE 1 (received from the NPN-CE) to PE-2 through 
the provider router P1 (Figure 6.10(b) thick green line). Finally, the PE 2 will route the traffic to the 
MNO-CE router. 

• VLAN domain and WAN/MAN transport domain: NPN-CE might translate and encapsulate control 
and data plane traffic of the IP network (192.168.x.x) from transport domain IP address 10.x.x.x using 
NAT following a policy from the GW setup for each virtual port (TCP port and NAT reserved ports). 
In the other side the MNO-CE will do similar procedure to recover the traffic of slice 1 into the VLAN 
domain. 

6.3 Intelligent stratum integration – initial solution design  
AI/ML-based applications require high computation and memory capabilities and have a high-power 
consumption profile. The performance of an AI/ML-based applications also highly rely on the available data 
set (amount/diversity of the data, data refreshing frequency), how fast the existing model is re-trained with 
the new data set and how fast the re-trained model is deployed to take actions. On the one hand, not all 
components in a network architecture such as mobile end-user devices, light-weight edge servers have high-
level computation and storage capabilities as in data centres. On the other hand, providing data or data sets 
to a more central location like data centres for AI/ML processing would increase network traffic burden and 
may not provide QoS requirements for delay-sensitive services such as URLLC. Hence, where to deploy an 
AI/ML-based application has a significant impact on achieving the service requirements.  

In addition to performance-related objectives, data security and privacy protection are other aspects that 
should be taken into account while discovering options on AI engine deployment. For example, different 
network deployment options such as a standalone or public network integrated private network deployment 
as considered in 5G-CLARITY may have privacy concerns on uploading required data sets to outside the 
private premises. Therefore, privacy protection should also be considered when investigating the trade-off 
between the location of an AI engine that hosts AI/ML algorithms/applications and the performance 
gain/achievable QoS KPIs. 

Accordingly, splitting AI/ML operation between various network components, distributing telemetry data 
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and AI/ML model, and gathering fragmented model training data for Federated Learning are discussed in 
detail in this deliverable to investigate AI engine location options. 

This section provides an overview of the different deployment options for AI engines to perform ML model 
training as well as inference. The AI engine location aspects are discussed for the options on splitting AI/ML 
operations (training and inference) between various network components (Section 6.3.1), distributing the 
available telemetry data and trained ML model among the involved components (Section 6.3.2) and 
aggregating/combining different AI/ML models that are partially trained with a limited data set in either end 
user devices or edge devices (Section 6.3.3). 

 Splitting AI/ML operation between various network components 

Splitting AI/ML operation between various network components can be considered in two aspects, namely, 
AI/ML training and AI/ML inference. Based on the device/edge server capabilities and service requirements, 
different options on offloading AI/ML inference or AI/ML training from one network component to another 
can be considered. The two inherent options are performing training and inference either at the end user 
device or at the edge/cloud server. However, any kind of splitting option for the AI/ML inference into 
multiple parts according to the current task and environment can also be considered to adapt 
load/congestion on both ends, the end user device and edge/cloud server. This kind of adaptive splitting 
options will alleviate the pressure of computation, memory/storage, power and required data rate. Hence, 
these options may obtain a better model inference performance on latency, accuracy and privacy protection. 

Several modes for splitting AI/ML operations between different network components are discussed in [75]. 
In general, the considered modes are applicable for AI/ML training as well as inference, and they focus on 
data rate requirements, latency, splitting point and privacy. In other words, different options are considered 
i) to offload the computation-intensive, power-intensive parts to high-end network components such as 
edge and cloud servers; and ii) to perform the privacy-sensitive and delay- sensitive parts at the end user 
devices. Based on the considered splitting mode, either the device or edge server executes the 
operation/model up to a specific part/layer and send the intermediate data to other network components 
(device to edge server, device to cloud server) or other devices (device to device). The remaining parts/layers 
are then executed at these other network components and inference results are fed back to the device. A 
summary of the AI/ML operation splitting modes along with their advantages and disadvantages is provided 
in Table 6-3 where an illustration of the considered modes is also provided in Figure 6.11.  

Table 6-3. Modes for Split AI/ML Operations Between Device and Network [75]. 

Mode 
Mode 
Name 

Description Advantages Disadvantages 

(a) 
Cloud/edge-

based 
inference 

• Training and inference 
are only carried out in a 
cloud or edge server.  

• The device only reports 
the sensing/perception 
data to the server.  

• Limiting the device 
complexity as the 
device does not need 
to support AI/ML 
training and inference 
operations. 

• The inference performance 
depends on communications 
data rate and latency between 
the device and the server. 

• Disclosure of the privacy-
sensitive data to the network. 

(b) 
Device-
based 

inference 

• Inference is performed 
locally at the mobile 
device. 

• Training can be 
performed either at the 
device or server where 
pre-trained models are 
downloaded by the 

• During the inference 
process, the device 
does not need to 
communicate with the 
cloud/edge server. 

• Preserves the privacy 
at the data source. 

• Imposing an excessive 
computation/memory/storage 
resource to the device. 

• The device always keeps all 
the potentially needed AI/ML 
models onboard. 
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device. 

(c) 

Device-
cloud/edge 

split 
inference 

• Model is split into two 
parts between the device 
and the cloud/edge 
server. 

• The device will execute 
the AI/ML inference up 
to a specific part or layer 
and send the 
intermediate data to the 
cloud/edge server.  

• The server will execute 
the remaining part/layers 
and sends the inference 
results to the device.  

• Training can be either (i) 
partly executed in the 
server and device; or (ii) 
fully executed in the 
server, and the model is 
then downloaded by the 
device. 

• Compared to Mode 
(a), more flexible and 
more robust to the 
varying computation 
resource and 
communications 
condition. 

• The inference performance 
depends on communications 
data rate and latency between 
the device and the server. 

• Disclosure of the privacy-
sensitive data to the network. 

• Need to properly select the 
optimum split point between 
the device and network side. 

(d) 
Edge-cloud 

split 
inference 

• An extension of Mode 
(a).  

• The difference is that the 
DNN model (training and 
inference) is executed 
through edge-cloud 
synergy, rather than 
executed only on either 
cloud or edge server. 

• The latency-sensitive 
part of an AI/ML 
inference operation or 
layers of an AI/ML 
model can be 
performed at the edge 
server.  

• The computation-
intensive parts/layers 
that the edge server 
cannot perform can 
be offloaded to cloud 
server. 

• The device does not 
need to support AI/ML 
training/inference 
operations. 

• The inference performance 
depends on communications 
data rate and latency between 
the edge and the cloud 
servers. 

• Disclosure of the privacy-
sensitive data to the network. 

• A proper split point needs to 
be selected for an efficient 
cooperation between the 
edge and cloud servers. 

(e) 

Device-
edge-cloud 

split 
inference 

• A combination of Modes 
(c) and (d).  

• An AI/ML inference 
operation or an AI/ML 
model is split over the 
mobile device, the edge 
and the cloud servers. 

• The device sends the 
intermediate data 
outcome from its 
computation to the edge 

• The computation-
intensive parts/layers 
of an AI/ML 
operation/model can 
be distributed among 
the cloud and/or edge 
server.  

• The latency-sensitive 
parts/layers can be 
performed on the 
device or the edge 

• The inference performance 
depends on communications 
data rate and latency between 
the device, the edge and the 
cloud servers. 

• Two split points need to be 
selected for an efficient 
cooperation between the 
device, the edge and the cloud 
servers. 
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server.  

• The edge server sends 
the intermediate data 
outcome from its 
computation to the cloud 
server. 

• The training can be 
executed either fully at 
the cloud server and then 
distributed to the edge 
and device; or federated 
learning can be employed 
between the cloud 
server, edge server and 
device. 

server.  

• The privacy-sensitive 
data can be left at the 
device 

(f) 
Device-

device split 
inference 

• Provides a de-centralized 
split inference.  

• An AI/ML inference 
operation or model can 
be split over different 
mobile devices. 

• Devices exchange 
intermediate data 
between each other. 

• Training is executed in 
the server and then the 
pre-trained model(s) is 
downloaded by the 
devices. 

• The computation load 
can be distributed 
over devices. 

• Each device preserves 
its private information 
locally. 

• The inference performance 
depends on communications 
data rate and latency between 
the devices. 

• A proper split point needs to 
be selected for an efficient 
cooperation between the 
devices. 

(g) 

Device-
device-

cloud/edge 
split 

inference 

• A combination of Modes 
(c) and (e). 

• An AI/ML inference 
operation or model is 
split into the device part 
and network part.  

• The device part can be 
executed in a de-
centralized manner 
(further split over 
different mobile devices). 

• Training is executed in 
the server and then the 
pre-trained model(s) is 
downloaded by the 
devices. 

• The intermediate data 
can be sent from one 
device to the 
cloud/edge server. 

• Multiple devices can 
send intermediate 
data to the 
cloud/edge server. 

• The inference performance 
depends on communications 
data rate and latency 
between the devices. 

• A proper split point needs to 
be selected for an efficient 
cooperation between the 
device and other devices/the 
edge server/the cloud server. 
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(a)                              (b)                                   (c)                                           (d) 

              
                               (e)                                                 (f)                                                     (g) 

Figure 6.11. AI/ML inference splitting modes over endpoints [75].  

 

 Distributed telemetry data and AI/ML model 

As noted, the end user devices have limited computation and storage capabilities compared to the edge and 
cloud servers. Therefore, AI/ML model training and inference performance including required data set size, 
accuracy, required time for training/inference and power consumption may not provide the expected gains 
from the AI/ML applications. Especially, the adapting the AI/ML model to various tasks and changing 
environments is the main challenge perform AI/ML training and inference on the end user devices as i) a 
large set of data is needed to improve AI/ML model/inference accuracy; and ii) the end user devices are 
computation-limited, storage-limited and battery powered, hence, training an AI/ML model may take quite 
some time. In addition, it may not be possible to have or store all the required telemetry data at the end 
user device. One of the options to compensate inference accuracy and performance KPIs is on adaptively 
selecting the AI/ML model from a set of already trained models and downloading the model, as noted some 
of the considered modes in Table 6-3. Such an option enables the end user device to respond different task 
requirements and environment variations without exhaustively utilizing the end user computation, storage 
and power resources.  

Figure 6.12 shows an exemplary process of selecting and downloading an AI/ML model. First of all, this 
process depends on the end user device capabilities. In case running an AI/ML model is beyond the 
computation capabilities of the device, selecting and downloading an AI/ML model cannot improve the 
performance. Instead, other mode of splitting options listed in Table 6-3 such as device to edge or cloud 
server should be adopted. In case the device has the capacity and capability to run the AI/ML model, the 
selection of the model can be done based on the AI/ML task, specific environment, available telemetry data 
set and a list of the models available at the edge or cloud server. The AI/ML model selection can be controlled 
by either the end user device or network itself.  
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Figure 6.12. AI/ML model selection and downloading process [75].  

As different network components may run the same AI/ML model with different data sets, there may be 
cases where the end user device first needs to provide environment-specific telemetry data to the edge or 
cloud server, and then the edge or cloud server takes the AI/ML model selection decision to accommodate 
AI/ML task requirements. 

 Federated Learning 

The end user device data on network performance, link status, sensors, camera, etc. is essential to utilize 
huge gains promised by AI/ML applications. Thus, in conventional AI/ML applications, the end user data is 
collected at the edge or cloud servers for centralized AI/ML model training. However, as noted previously, 
user privacy/data security and network traffic overhead that may happen while uploading the end user 
device data to edge/cloud servers challenge the adoption as well as accuracy of AI/ML applications. To 
overcome this issue, an approach termed Federated Learning has been thoroughly discussed in [76]. In 
Federated Learning, the collected data is not the raw end user data, instead it is a partially trained AI/ML 
model data that is used to train a global AI/ML model. As the end user device (or the edge devices deployed 
in private premises) shares the AI/ML model training data, the user privacy is protected. There can be issues 
regarding the data security while transmitting the trained model data, the data security is enhanced from 
the end user perspective. 

In Federated Learning, the main challenge lies on the aggregating/combining different AI/ML models that 
are partially trained with a limited data set on the end user devices or edge servers. As the accuracy level of 
the trained model depends on the available data set, computation and storage capabilities of the end user 
device or edge server, it can be expected that the confidence level of gathered interim training results varies 
between various devices. In order to achieve a desirable accuracy level in Federated Learning, several 
approaches such as iterative model averaging, frequency of aggregation for the global AI/ML model and so 
on are proposed [76].  

 

 



D4.2 – Validation of 5G-CLARITY SDN/NFV Platform, Interface Design 
            with 5G Service Platform, and Initial Evaluation of ML Algorithms  

180 

 
5G-CLARITY [H2020-871428] 

7 Conclusions  
5G-CLARITY system provides a number of capabilities for private network operators to easily deploy, 
configure and monitor on-premises infrastructure slices. These capabilities are provided by management 
functions distributed across two 5G-CLARITY architecture strata: management and orchestration stratum, 
focusing on slice provisioning and monitoring; and intelligence stratum, which provides necessary AI/ML and 
intent based artifacts to assist in the slice run-time operation (e.g., assurance). This deliverable has provided 
a first release version of these two strata, together with an initial evaluation of selected ML algorithms. 
Additional to these on-premises operational capabilities, this deliverable has also provided a first solution of 
the levers allowing for public-private network integration.  

Section 2 reported the initial results on the development of the 5G-CLARITY management and orchestration 
stratum, providing implementation details on relevant management functions (Slice Manager, Multi-WAT 
non-RT Controller, Data Semantics Fabric and Data Lake), with some validations on relevant application 
scenarios. The next three sections reported initial results on the development of the 5G-CLARITY intelligence 
stratum. In particular, Section 3 provided the initial results on selected ML algorithms, while Sections 4 and 
5 captured the first release version of AI and intent engines, respectively. Finally, Section 6 provided an initial 
solution design for the interoperation with PLMNs, so the integrity of PNI-NPN can be ensure across all layers, 
from connectivity layer up to the intelligence layer.  

The next deliverable of WP3, 5G-CLARITY D4.3, will report on the final release of the two in-scope 5G-CLARITY 
architecture strata, and on the final evaluation of selected ML algorithms. It also will provide a refined 
solution design for the integration with public networks, with a special focus on the mediation function and 
distributed AI.   
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9 Annex A – MANO federation 

9.1 MANO federation in ETSI ISG NFV 
The multi-domain problem in virtualized environments has been addressed in ETSI ISG NFV [77], where some 
architecture options to support the multi-MANO inter-working service as well as simplified operational flows 
are analysed. One interesting use case in [77] is referred to as network services (NS) provided using multiple 
administrative domains. It can be mapped to the NFVI.MM2/3 of the 5G-CLARITY NFVIaaS model, where the 
MNO establishes a connection to the 5G-CLARITY NFVO. In this case, each administrative domain deploys 
the functional blocks of the ETSI NFV MANO architectural framework, including an NFVO to manage the 
specific NSs that are hosted and offered by the organization. This solution relies on the concept of composite 
NS and nested NSs specified in [69]. Specifically, an administrative domain can build up a composite NS from 
several constituent nested NSs, which would be offered by a different administrative domain. Nested NS can 
also be shared by another composite NS that may belong to other administrative domains. In such a 
hierarchical layout, the on-top administrative domain(s) manage(s) the composite NS, while the other 
administrative domains manage the nested NS. Figure 9.1 shows a multi-domain scenario, where each 
administrative domain holds its own ETSI NFV MANO stack. The administrative domain managing the 
composite NS (C) is interconnected to the administrative domains that are responsible of the nested NS (A 
and B). 

Some issues arise when using composite NS and nested NS among different administrative domains. One is 
that an SLA is required between organizations. Consequently, for SLA supervision, the resource usage of the 
constituent nested NSs needs to be monitored. To ensure proper operation of the system, some fault and 
performance monitoring is also required. In addition, specific protocols may be defined to provide auto-
discovery of the ETSI NFV MANO functional blocks from other administrative domains. The required 
interoperability to overcome these issues is provided by a new reference point between NFVOs, named Or-
Or, as shown in Figure 9.1. 

In case an operator wants to deploy a composite NS spanning multiple administrative domains, the Or-Or 
interface should allow the operator’s NFVO to query the NSDs of the nested NS in order to identify and select 
them. 

  
Figure 9.1. Example of multiple administrative domains providing a composite NS [77]. 
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Additionally, some operations for the lifecycle management of the composite NS should be supported, such 
as instantiation, scaling and termination. For example, in Figure 9.1, the NFVO-1 can trigger the instantiation 
of the nested NSs to the NFVO-2 and NFVO-3. The functional requirements, interfaces and operations 
through the Or-Or reference point is covered in NFV-IFA 030 [71],while the specification of a set of RESTful 
protocol and data models for the interfaces over the Or-Or reference point is captured in NFV-SOL 011 [72]. 

Another representative use case described in [69] is the NFVIaaS, which can be mapped to the NFVI.MM3 of 
the 5G-CLARITY NFVIaaS model. In this case, the NFVIaaS consumer (e.g., the MNO) establishes a connection 
to the VIM of the NFVIaaS provider (e.g., the 5G-CLARITY system). The solution may have one or multiple 
logical points of contact between the administrative domains. In addition, the consumer’s VNFM may invoke 
the operations directly on the provider’s VIM or indirectly through the consumer’s NFVO. The number of 
logical points of contact influences the way in which 5G-CLARITY computes quotas would be managed. In 
particular, a solution based on multiple connections allows the consumer’s NFVO to break down the quota 
to the respective VIMs and maintains the quota information across the VIMs. On the contrary, with a single 
connection, the responsibility for coordinating the quota across the different VIMs falls on the side of the 
NFVIaaS provider. As in the previous use case, it is expected that an SLA is established between the NFVIaaS 
provider and consumer, as well as monitoring of resource usage is carried out for SLA supervision. The 
NFVIaaS provider should also give an overall view of the NFVI resources, including some fault and 
performance monitoring information. The NFVIaaS consumer may be responsible for establishing quotas and 
other constraints. However, it would only receive information on resources related to its NFVI service. 

9.2 MANO federation in the research community 
In addition to the efforts of Standards Development Organizations (SDOs) to face the multi-domain 
orchestration, there are also some works in the research community that deserve special attention. For 
example, the authors of [78] propose an architecture that extends the standard ETSI NFV MANO system, 
offering a versatile solution. While the solution presented in Figure 9.1 is based on a peer-to-peer 
communication between the respective NFVO instances, the coordination between the different ETSI NFV 
MANO systems in this new solution is performed by an over-arching entity, as shown in Figure 9.2. In 
particular, the solution relies on an inter-slice resource broker which enables orchestration per 
administrative domain by managing a set of complete ETSI NFV MANO stacks. The role of this coordination 
entity is to give a general view of the whole infrastructure that can be offered within a single administrative 
domain and to provide monitoring of the resource usage for each NFVI consumer. As resource broker, this 
entity also controls the dimensioning of resources that are assigned to each NFVI consumer. However, the 
proposed architectural framework is limited by the fact that only one NFVIaaS provider, i.e., the network 
operator, is assumed in the scenario. Note that the solid rectangles in Figure 9.2 represent the management 
functions of the network operator. In this way, the resources from different administrative domains are 
integrated into a single NFVI block that is orchestrated from a single administrative domain. 

There are also some relevant research projects addressing the multi-domain orchestration. Specifically, the 
H2020 SliceNet project [79] defines a cognition-based approach where the orchestration system interacts 
with the cognition system to provide the required actions that guarantee the Quality of Experience (QoE) of 
the multiple NS deployed across different administrative domains. The cognition system enables, for 
example, effective fault management by identifying the administrative domain that requires modifications 
to enforce the corresponding recovery actions. 
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Figure 9.2. Architectural framework proposed in [78] for multi-domain orchestration. 

The H2020 5G-TRANSFORMER project [80] proposes a platform architecture that is decomposed into three 
building blocks: the vertical slicer, supporting the creation and management of slices for verticals; the service 
orchestrator (shown in Figure 9.3), for end-to-end service orchestration and federation of resources and 
services from multiple domains; and the mobile transport and computing platform, acting as the underlying 
front-haul and back-haul transport network infrastructure. To enable a multi-domain capable service 
orchestrator, the architecture includes two additional blocks (highlighted in Figure 9.3): a hierarchical 
(parent-child) service orchestration engine (SOE) and a composite resource orchestrator engine (CROOE). 
The SOE parent coordinates with other SOE parents for multi-domain service orchestration and interacts 
with the corresponding CROOE, which manages the interconnections between the nested NSs. Given this, 
the service orchestration part would require minimum modifications compared to NFV-IFA013/030 for 
supporting federation [81]. 

 

 
Figure 9.3. The 5G-TRANSFORMER service orchestrator (SO) software architecture [81]. 
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The H2020 5Growth project [82] is envisioned to enhance the 5G-TRANSFORMER platform. In particular, the 
vertical slicer component provides additional support towards the multi-domain at the service level. It 
defines a new functional block, the communication service federation function, which decides how to split 
the communication service into subservices that can be assigned to different provider domains. Federation 
can also occur at the network level, where the service orchestrator acts as an NFVO, comprising service and 
resource orchestration functionalities. In this case, the NS request is handled as a composite NS and the 
service orchestrator will interact with the service orchestrators of other domains to deploy the nested NS. 
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